Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
How does toxicity change depending on rank in League of Legends?
Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Arts, Department of Game Design.
Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Arts, Department of Game Design.
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This thesis aims to investigate toxic remarks in three different ranks in League of Legends, Bronze, Gold, and Diamond. The purpose is to understand how toxic communication between players would change depending on rank. A framework from Neto, Alvino and Becker (2018) was adopted to define and count toxic remarks. The method relied on participant observation to gather data; three different ranks were specified for data collection. Fifteen games were played in each of the ranks; Bronze, Gold, and Diamond. Each game was recorded, transcribed and analyzed by dividing each toxic remark registered into Neto, Alvino and Becker’s predetermined categories. The study concluded that domain language is more often used by players with a higher rank, meaning that high ranked players tend to use toxicity that requires previous game knowledge to understand. On the contrary, low ranked players tend to stick to basic complaints and insults when using toxicity to remark teammates while playing. 

Abstract [sv]

Syftet med detta examensarbete är att undersöka förekomsten av toxiska yttranden i tre olika ranger i League of Legends: Brons, Guld och Diamant. Målet är att försöka förstå hur toxiska yttranden spelarna emellan ändras beroende på rang. För att kunna definiera och räkna toxiska yttranden användes ett ramverk som utformats av Neto, Alvino och Becker (2018). Som metod för insamlingen av data från de tre olika rangerna användes deltagarobservationer. Femton matcher spelades i var och en av rangerna Brons, Guld och Diamant. Varje match spelades in, transkriberades och analyserades och de toxiska yttrandena delades upp i Neto och Beckers olika kategorier. Utifrån studien kan slutsatsen dras att domänspråk är oftare använt av spelare i högre ranger och att domänspråk är kopplat till slang inom spel som kräver tidigare kunskap i spelet för att förstå. I motsats till detta använder spelare i lägre ranger mer basala klagomål och förolämpningar när toxiska yttranden riktas mot andra spelare.

Place, publisher, year, edition, pages
2019. , p. 28
Keywords [en]
Toxic Remark, Toxicity, Domain Language, Domain Knowledge, Spam, League of Legends, MMO
National Category
Social Sciences Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-389338OAI: oai:DiVA.org:uu-389338DiVA, id: diva2:1336598
Subject / course
Game Design (HGO)
Supervisors
Examiners
Available from: 2019-08-19 Created: 2019-07-09 Last updated: 2019-08-19Bibliographically approved

Open Access in DiVA

fulltext(483 kB)17556 downloads
File information
File name FULLTEXT01.pdfFile size 483 kBChecksum SHA-512
b50b011e084cced80d8440a1a2b1144d8c0f8acec8c13fca77e8e76aa66e9908fa54b17b3b51bca283b13e4c74adab44bccc033c6740897c3022e1822b516f11
Type fulltextMimetype application/pdf

By organisation
Department of Game Design
Social SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 17561 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 9782 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf