Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparing genetic algorithms and tabu search in the order batch picking problem
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Jämförelse av genetiska algoritmer och tabu sökning för order batchnings problemet (Swedish)
Abstract [en]

In this paper genetic algorithms (GA) and tabu search are compared in the order batch picking problem – modelled as a multiple agent traveling salesman problem. The algorithms are evaluated in a simulated warehouse implemented with class based storage in mind. Both of the approaches appeared to find optimal solutions where it was possible to verify but it was was hard to comment on optimality as the problem space grew. In the implementations in this paper it was possible to construct a heuristic for the tabu search to outperform the GA. However in their general forms the GA outperformed the tabu search in the experiments

Abstract [sv]

I den här rapporten jämförs genetiska algoritmer (GA) och tabu sökning för order batchningsproblemet – modelerat som ett multi agents traveling salesman problem. Algoritmerna är evaluerade i ett simulerat lager som är implementerad med klass-baserad lagring. Båda tillvägagångssätten hittade optimala lösningar då det var möjligt att verifiera men det är svårt att kommentera optimaliteten när storleken på problemet växte. Det var möjligt att konstruera en tabu sökning som presterar bättre än GAn. Dock i deras generella former presterar GAn bättre än tabu sökningen i experimenten.

Place, publisher, year, edition, pages
2019.
Series
TRITA-EECS-EX ; 2019:312
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-254928OAI: oai:DiVA.org:kth-254928DiVA, id: diva2:1336284
Subject / course
Computer Science
Supervisors
Examiners
Available from: 2019-07-29 Created: 2019-07-09 Last updated: 2019-07-29Bibliographically approved

Open Access in DiVA

fulltext(874 kB)15 downloads
File information
File name FULLTEXT01.pdfFile size 874 kBChecksum SHA-512
e6d60fefa6b200ef9f781e09740f2b0aaad7b0e6a78caa1646fe38db5d92d731e0c39d1457f8bb85f1e72bcfc11b5b54b22039045bc53cbb7b17ef499e0cbdd3
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 15 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf