Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An evaluation of deep neural network approaches for traffic speed prediction
KTH, School of Electrical Engineering and Computer Science (EECS).
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The transportation industry has a significant effect on the sustainability and development of a society. Learning traffic patterns, and predicting the traffic parameters such as flow or speed for a specific spatiotemporal point is beneficial for transportation systems. For instance, intelligent transportation systems (ITS) can use forecasted results to improve services such as driver assistance systems. Furthermore, the prediction can facilitate urban planning by making management decisions data driven.

There are several prediction models for time series regression on traffic data to predict the average speed for different forecasting horizons. In this thesis work, we evaluated Long Short-Term Memory (LSTM), one of the recurrent neural network models and Neural decomposition (ND), a neural network that performs Fourier-like decomposition. The results were compared with the ARIMA model. The persistent model was chosen as a baseline for the evaluation task. We proposed two new criteria in addition to RMSE and r2, to evaluate models for forecasting highly variable velocity changes. The dataset was gathered from highway traffic sensors around the E4 in Stockholm, taken from the “Motorway Control System” (MCS) operated by Trafikverket.

Our experiments show that none of the models could predict the highly variable velocity changes at the exact times they happen. The reason was that the adjacent local area had no indications of sudden changes in the average speed of vehicles passing the selected sensor. We also conclude that traditional ML metrics of RMSE and r2 could be augmented with domain specific measures.

Abstract [sv]

Transportbranschen har en betydande inverkan på samhällets hållbarhet och utveckling. Att lära sig trafikmönster och förutsäga trafikparametrar som flöde eller hastighet för en specifik spatio-temporal punkt är fördelaktigt för transportsystem. Intelligenta transportsystem (ITS) kan till exempel använda prognostiserade resultat för att förbättra tjänster som förarassistanssystem. Vidare kan förutsägelsen underlätta stadsplanering genom att göra ledningsbeslut datadrivna.

Det finns flera förutsägelsemodeller för tidsserieregression på trafikdata för att förutsäga medelhastigheten för olika prognoshorisonter. I det här avhandlingsarbetet utvärderade vi Långtidsminne (LSTM), en av de återkommande neurala nätverksmodellerna och Neural dekomposition (ND), ett neuralt nätverk som utför Fourierliknande sönderdelning. Resultaten jämfördes med ARIMA-modellen. Den ihållande modellen valdes som utgångspunkt för utvärderingsuppgiften. Vi föreslog två nya kriterier utöver RMSE och r2, för att utvärdera modeller för prognoser av högt variabla hastighetsändringar. Datasetet insamlades från trafiksensor på motorvägar runt E4 i Stockholm, för det så kallade motorvägskontrollsystemet (MCS).

Våra experiment visar att ingen av modellerna kan förutsäga de höga variabla hastighetsförändringarna vid exakta tider som de händer. Anledningen var att det intilliggande lokala området inte hade några indikationer på plötsliga förändringar i medelhastigheten hos fordon som passerade den valda sensorn. Vi drar också slutsatsen att traditionella ML-metrics av RMSE och R2 kan kompletteras med domänspecifika åtgärder.

Place, publisher, year, edition, pages
2018. , p. 81
Series
TRITA-EECS-EX ; 2018:786
Keywords [en]
Deep Learning, Regression, Time Series, LSTM, Neural decomposition.
Keywords [sv]
Djupinlärning, Regression, Tidsserier, LSTM, Neural dekomposition.
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-254911OAI: oai:DiVA.org:kth-254911DiVA, id: diva2:1335947
Subject / course
Computer Science
Educational program
Degree of Master
Supervisors
Examiners
Available from: 2019-07-08 Created: 2019-07-08 Last updated: 2019-07-08Bibliographically approved

Open Access in DiVA

fulltext(3858 kB)8 downloads
File information
File name FULLTEXT01.pdfFile size 3858 kBChecksum SHA-512
a64fe475cfc8eb4696b3be267a5edb272217d4b5304f17abfb8c86348b32d22e3e4e0574530f82a45f86d980cc5fa0871054313ef8bf7469f806e9a2b2b0f819
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 8 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf