Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Traffic Load Predictions Using Machine Learning: Scale your Appliances a priori
KTH, School of Electrical Engineering and Computer Science (EECS).
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Layer 4-7 network functions (NF), such as Firewall or NAPT, have traditionally been implemented in specialized hardware with little to no programmability and extensibility. The scientific community has focused on realizing this functionality in software running on commodity servers instead. Despite the many advancements over the years (e.g., network I/O accelerations), software-based NFs are still unable to guarantee some key service-level objectives (e.g., bounded latency) for the customer due to their reactive approach to workload changes.

This thesis argues that Machine Learning techniques can be utilized to forecast how traffic patterns change over time. A network orchestrator can then use this information to allocate resources (network, compute, memory) in a timely fashion and more precisely. To this end, we have developed Mantis, a control plane network application which (i) monitors all forwarding devices (e.g., Firewalls) to generate performance-related metrics and (ii) applies predictors (moving average, autoregression, wavelets, etc.) to predict future values for these metrics. Choosing the appropriate forecasting technique for each traffic workload is a challenging task. This is why we developed several different predictors. Moreover, each predictor has several configuration parameters which can all be set by the administrator during runtime.

In order to evaluate the predictive capabilities of Mantis, we set up a test-bed, consisting of the state-of-the-art network controller Metron [16], a NAPT NF realized in FastClick [6] and two hosts. While the source host was replaying real-world internet traces (provided by CAIDA [33]), our Mantis application was performing predictions in real time, using a rolling window for training. Visual inspection of the results indicates that all our predictors have good accuracy, excluding (i) the beginning of the trace where models are still being initialized and (ii) instances of abrupt change. Moreover, applying the discrete wavelet transform before we perform predictions can improve the accuracy further.

Abstract [sv]

Nätverksfunktioner i lager 4-7 som t.ex. brandväggar eller NAPT har traditionellt implementeras på specialdesignad hårdvara med väldigt få programeringsegenskaper. Forskning inom datakomunikation har fokuserat på att istället möjliggöra dessa funktioner i mjukvara på standardhårdvara. Trots att många framsteg har gjorts inom området under de senaste åren (t.ex. nätverks I/O accelerering), kan inte mjukvarubaserade nätverksfunktioner garantera önskad tjänstenivå för kunderna (t.ex. begränsade latensvärden) p.g.a. det reaktiva tillvägagångsättet när arbetslasten ändras. Den här avhandlingen visar att med hjälp av maskininlärning så går det att förutse hur trafikflöden ändras över tid. Nätverksorkestrering kan sedan användas för att allokera resurser (bandbredd, beräkning, minne) i förväg samt mer precist. För detta ändamål har vi utvecklat Mantis, en nätverksapplikation i kontrolplanet som övervakar alla nätverksenheter för att generera prestandabaserade mätvärden och använder matematiska prediktorer (moving average, autoregression, wavelets, o.s.v.) för att förutse kommande ändringar i dessa värden. Det är en utmaning att välja rätt metod för att skapa prognosen för varje resurs. Därför har vi utvecklat flera olika prediktorer.

Dessutom har varje prediktor flera konfigurationsvärden som kan ändras av administratören.

För att utvärdera Mantis prognoser har vi satt upp ett testnätverk med en av marknadens ledande nätverkskontrollers, Metron [16], en NAPT nätverksfunktion implementerad med FastClick [6] och två testnoder. Den ena noden skickar data hämtad från verklig Internettrafik (erhållen från CAIDA [33]) samtidigt som vår applikation, Mantis, skapar prognoser i realtid. Manuell inspektion av resultaten tyder på att alla våra prediktorer har god precision, förutom början av en spårning då modellerna byggs upp eller vid abrupt ändring. Dessutom kan precisionen ökas ytterligare genom att använda diskret wavelet transformering av värdena innan prognosen görs.

Place, publisher, year, edition, pages
2018. , p. 49
Series
TRITA-EECS-EX ; 2018:781
Keywords [en]
Network Function Virtualization, Software Defined Networking, Machine Learning, Predictions
Keywords [sv]
Network Function Virtualization, Software Defined Networking, Maskininlärning, Prognoser
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-254906OAI: oai:DiVA.org:kth-254906DiVA, id: diva2:1335932
Subject / course
Electrical Engineering
Educational program
Master of Science -Communication Systems
Supervisors
Examiners
Available from: 2019-07-08 Created: 2019-07-08 Last updated: 2019-07-08Bibliographically approved

Open Access in DiVA

fulltext(2174 kB)16 downloads
File information
File name FULLTEXT01.pdfFile size 2174 kBChecksum SHA-512
ac99c481baaefcdd1e1323e0fa02cfee4313c44f05d82dbf8754f0fa5505908e8668ec0e2f8fa383cf0ac9e07c05b5b94f09804902d70f16b446c387c96576f2
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 16 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf