Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stochastic Knock Control for Improved Efficiency
Linköping University, Department of Electrical Engineering, Vehicular Systems.
Linköping University, Department of Electrical Engineering, Vehicular Systems.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Increasing the efficiency and performance of internal combustion engines is always of interest in the automotive industry. One limiting factor to achieve this in gasoline combustion engines is the ignition timing which can not always be set where optimal ignition efficiency and performance is obtained. This is due to the knock phenomenon which is an abnormal combustion process that can damage the engine. Due to knock, a feedback controller which sets the ignition timing at the best possible value without the risk of harming the engine is required. In this thesis, a statistically driven knock intensity simulation environment based on the Burr Type XII distribution model was set up. In the simulation environment, different stochastic knock feedback controllers were implemented along with background noise estimation techniques used in the knock detection system. The feedback controllers were evaluated against the conventional knock controller commonly used in today’s engines in terms of ignition angle and transient response. The results from the simulation environment showed that a more advanced mean ignition angle can be achieved with stochastic based knock control strategies with the same knock-rate and without lessening the fast transient response achieved from the conventional strategy. To evaluate the results, some of the controllers were implemented in a four cylinder two-liter four stroke Volvo engine with similar results.

Place, publisher, year, edition, pages
2019. , p. 60
Keywords [en]
Knock control, Stochastic knock control, Knock simulation
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-158635ISRN: LiTH-ISY-EX–19/5228–SEOAI: oai:DiVA.org:liu-158635DiVA, id: diva2:1335445
External cooperation
Volvo Car Corporation
Subject / course
Vehicular Systems
Presentation
2019-06-04, Linköping, 10:00 (Swedish)
Supervisors
Examiners
Available from: 2019-07-05 Created: 2019-07-05 Last updated: 2019-07-05Bibliographically approved

Open Access in DiVA

fulltext(2718 kB)27 downloads
File information
File name FULLTEXT01.pdfFile size 2718 kBChecksum SHA-512
28a8076963bca829748a5b15acf8e8a1cf628b78e5bf3545e1e2c5835687fbd7721a3747ad35a633099de6720910ec54f8ae29e51301b32801df2dd5a84257ea
Type fulltextMimetype application/pdf

By organisation
Vehicular Systems
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 27 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf