Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Can students' progress data be modeled using Markov chains?
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Kan studenters genomströmning modelleras med Markovkedjor? (Swedish)
Abstract [en]

In this thesis a Markov chain model, which can be used for analysing students’ performance and their academic progress, is developed. Being able to evaluate students progress is useful for any educational system. It gives a better understanding of how students resonates and it can be used as support for important decisions and planning. Such a tool can be helpful for managers of the educational institution to establish a more optimal educational policy, which ensures better position in the educational market. To show that it is reasonable to use a Markov chain model for this purpose, a test for how well data fits such a model is created and used. The test shows that we cannot reject the hypothesis that the data can be fitted to a Markov chain model.

Abstract [sv]

I detta examensarbete utvecklas en Markov-kedjemodell, som kan användas för att analysera studenters prestation och akademiska framsteg. Att kunna utvärdera studenters väg genom studierna är användbart för alla utbildningssystem. Det ger en bättre förståelse för hur studenter resonerar och det kan användas som stöd för viktiga beslut och planering. Ett sådant verktyg kan vara till hjälp för utbildningsinstitutionens chefer att upprätta en mer optimal utbildningspolitik, vilket säkerställer en bättre ställning på utbildningsmarknaden.

För att visa att det är rimligt att använda en Markov-kedjemodell för detta ändamål skapas och används ett test för hur väl data passar en sådan modell. Testet visar att vi inte kan avvisa hypotesen att data kan passa en Markov-kedjemodell.

Place, publisher, year, edition, pages
2019.
Series
TRITA-SCI-GRU ; 2019:161
Keywords [en]
Markov chain, Markov model, Markov process
Keywords [sv]
Statistik, tillämpad matematik, markovkedjor, markovkedja, markov, markovprocess
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-254285OAI: oai:DiVA.org:kth-254285DiVA, id: diva2:1334677
Subject / course
Applied Mathematics and Industrial Economics
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2019-07-03 Created: 2019-07-03 Last updated: 2019-09-17Bibliographically approved

Open Access in DiVA

fulltext(1646 kB)9 downloads
File information
File name FULLTEXT02.pdfFile size 1646 kBChecksum SHA-512
668f9af09305c2e7745b4d2e8456df410662a4fa1a40e032778d5e15d68b03d55269a280dac4598780b0c43e1b2a8675be8a659365e8649d8a2afaf0b63482f5
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 19 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf