Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nonlinear MPC for Motion Control and Thruster Allocation of Ships
Linköping University, Department of Electrical Engineering, Automatic Control.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Critical automated maneuvers for ships typically require a redundant set of thrusters. The motion control system hierarchy is commonly separated into several layers using a high-level motion controller and a thruster allocation (TA) algorithm. This allows for a modular design of the software where the high-level controller can be designed without comprehensive information on the thrusters, while detailed issues such as input saturation and rate limits are handled by the TA. However, for a certain set of thruster configurations this decoupling may result in poor control performance due to the limited knowledge in the high-level controller about the physical limitations of the ship and the behavior of the TA.

This thesis investigates different approaches of improving the control performance, using nonlinear Model Predictive Control (MPC) as a foundation for the developed motion controllers due to its optimized solution and capability of satisfying constraints. First, a decoupled system is implemented and results are provided for two simple motion tasks showing problems related to the decoupling. Thereafter, two different approaches are taken to remedy the observed drawbacks. A nonlinear MPC controller is developed combining the motion controller and thruster allocation resulting in a more robust control system. Then, in order to keep the control system modularized, an investigation of possible ways to augment the decoupled system so as to achieve similar performance as the combined system is carried out. One proposed solution is a nonlinear MPC controller with time-varying constraints accounting for the current limitations of the thruster system. However, this did not always improve the control performance since the behavior of the TA still is unknown to the MPC controller.

Place, publisher, year, edition, pages
2019. , p. 48
Keywords [en]
MPC, nonlinear MPC, model predictive control, thruster allocation, thrust allocation, motion control, motion control system, ship, dynamic positioning, azimuth, azipod
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-158493ISRN: LiTH-ISY-EX--19/5248--SEOAI: oai:DiVA.org:liu-158493DiVA, id: diva2:1334225
External cooperation
ABB Corporate Research
Subject / course
Automatic Control
Supervisors
Examiners
Available from: 2019-07-02 Created: 2019-07-02 Last updated: 2019-07-02Bibliographically approved

Open Access in DiVA

fulltext(1548 kB)33 downloads
File information
File name FULLTEXT01.pdfFile size 1548 kBChecksum SHA-512
488e607818359528bd9d09d45a15763c50be394041dac1125a6e0316b6bebb005aef7d88774c8e4a3c7ea1e2da6bddc31530acb8b7824eb91d13e527e3f36dce
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Bärlund, Alexander
By organisation
Automatic Control
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 33 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf