Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical methods for the wave equation with uncertainty
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Numeriska metoder för vågekvationen med osäkerhet (Swedish)
Abstract [en]

The problem of uncertainty quantification for the wave equation with random scatterers is explained and motivated. The background of various methods for solving hyperbolic partial differential equations is discussed, and the details of the numerical solution method used are explained. A brief discussion of uncertainty quantification (UQ) is included with a description of three different sampling methods and a precise description of the UQ problem investigated. Numerical results for different families of random scatterers are presented, including regularity tests and convergence analysis of the different sampling methods.

Abstract [sv]

I denna uppsats behandlas osäkerhetskvantifiering för vågekvationen med slumpmässiga spridare. Problemet beskrivs och motiveras. Olika numeriska metoder för att lösa hyperboliska partiella differentialekvationer diskuteras och en detaljerad beskrivning ges för den metod som används för att lösa vågekvationen. Osäkerhetskvantifiering introduceras tillsammans med en mer utförlig förklaring av tillämpningen på vågekvationen. Tre olika numeriska samplingsmetoder för osäkerhetskvantifiering definieras. Numeriska resultat för metoderna, tillämpade på olika typer av slumpmässiga spridare, ges, inklusive regularitetstester och konvergensanalys.

Place, publisher, year, edition, pages
2019.
Series
TRITA-SCI-GRU ; 2019:2
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-254564OAI: oai:DiVA.org:kth-254564DiVA, id: diva2:1333897
Subject / course
Scientific Computing
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2019-07-02 Created: 2019-07-02 Last updated: 2019-07-02Bibliographically approved

Open Access in DiVA

fulltext(3117 kB)8 downloads
File information
File name FULLTEXT01.pdfFile size 3117 kBChecksum SHA-512
912cbddbce57df641d51d4e61d8b97d5c566c842e0be177f7d9b1a0b5193d3dc4ca7c2a0528bb575f51ea9647b818e55092273eb9a28ce73962d0f2f92a05813
Type fulltextMimetype application/pdf

By organisation
Numerical Analysis, NA
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 8 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf