Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical and experimental dynamic analyses of the Vega Pedestrian bridge including seasonal effects
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

As timber structures become increasingly relevant and sought after – since they enable improvements in building time while reducing a structure’s life cycle impacts – streamlining their design can have meaningful economic and environmental implications.For timber footbridges, its design is frequently governed by serviceability criteria linked to excessive vibrations. To address this in design, it is necessary to correctly characterize the structure’s dynamic properties and understand what the leading parameters in its behaviour are.This thesis studied an existing timber arch footbridge, aiming to evaluate its dynamic behaviour both with experimental measurements and with theoretical models. The influence of temperature change over different seasons was considered, particularly around its effect on the asphalt layer – whose stiffness is highly correlated to temperature.The experimental results showed high correlation between temperature and natural frequencies: a variation of +21°C reduced the natural frequency for the 1st transverse mode of the deck by as much as 30.6% while the 1st vertical mode was reduced by 17.7% (variation of 0.029Hz/°C).The damping ratio was also measured, though a definitive correlation between its value and temperature was not identified.This change in behaviour cannot be explained by the influence of the asphalt layer alone however, as there is a high degree of uncertainty around many other components of the bridge and their interactions, such as the connections.Thus, to fully characterize the influence of each component with changing temperature, further experimental tests would have to be performed, or simpler structures with fewer connections should be considered.In designing a new structure, considering the asphalt layer as an added mass is a straightforward way to treat this material at the most critical condition (i.e. no contribution to stiffness). This strategy lead to sufficiently similar results between the computational model and the experimental results at warm temperatures.The asphalt stiffness could perhaps be considered for the 1st transverse mode of the deck, since it is in this mode that the asphalt layer plays its largest contribution.

Place, publisher, year, edition, pages
2019.
Series
TRITA-ABE-MBT ; 19440
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-254385OAI: oai:DiVA.org:kth-254385DiVA, id: diva2:1331645
Available from: 2019-06-27 Created: 2019-06-27

Open Access in DiVA

fulltext(8859 kB)22 downloads
File information
File name FULLTEXT01.pdfFile size 8859 kBChecksum SHA-512
0161758157425f2e2633a57749bdeae592d2f73d8cf2efc2c310a18fac5cd5cf8ff0635c648f0b2b8ab5ed098a46727a4bb3f5507852a59d12beae1b4235eb6b
Type fulltextMimetype application/pdf

By organisation
Structural Engineering and Bridges
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 22 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 70 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf