Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Climate Impact from Operational Energy Use in Facilities & Households
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Klimatpåverkan från driftenergi inom lokaler och hushåll (Swedish)
Abstract [en]

In 2017, the Swedish Parliament voted for a climate aim which says Sweden should achieve zero net emissions of greenhouse gases in 2045. The building and construction sector is one of the sectors that needs to reduce it’s climate impact. As of 2016, 12.8 million tons of CO2-equivalents was estimated emitted from the sector, which represented about 21 percent oftotal amounts of GHG-gases emitted from Sweden in that year. Several studies has shown that the operational energy use in the life cycle of buildings is source to the majority of the emissions.

This thesis was written in collaboration with Skanska Sweden, a Swedish construction company. Currently, there is no available value for the CO2-emissions emitted per m2 from the operational energy use in facilities and households at Skanska Sweden. The aim of this report is therefore to estimate the CO2-emissions emitted per m2 from various building types.This has been achieved through data investigations of what data is available and missing. Furthermore, methodologies have been investigated as well as energy sources for various buildings. Then the emissions were calculated as CO2-eq/m2 per building type. A sensitivity scenario was additionally performed by calcuating climate impact from different electric grids (Swedish, Nordic and European). Finally, a future energy scenario was investigated for2050 to estimate future climate impact from the operational energy use in various building types.

The energy data was based on two different databases, Base and Follow Up, whereas Base presented estimated energy interval values. Follow Up presented estimated and verified values. In the data collection, a categorisation was made depending on the various building types Skanska Sweden produces. The 7 categories was Houses, Multi-dwelling buildings,Offices, Care centers, Schools, Pre-schools and Other.

The findings were that in all categories but two (schools and offices), the operational energy use is higher when the values are verified, rather than estimated. Recommendations are therefore to increase the amount of available verified values, however, at the same time the amount of estimated values need to increase as well as many categories had a deficient amount of available data, this to increase the reliability of the results.

The difference in calculated climate impact is relatively large between categories, depending on energy sources for heating and hot tap water. For instance is the climate impact lowest for Houses when the majority of the energy comes from electricity. At the same time, the climate impact from the category Other is highest, which is because the energy use is high, but additionally because the majority of the energy comes from district heating. Overall, this energy source has higher climate impact than when the electricity is used. Nevertheless, it should be observed that the difference in categories is overall huge, depending on the chosen electricity grid.

Future emissions (2050) will be significantly lower than today, especially when the European grid and the EU reference scenario is chosen, but will be dependent on electricity prices additionally. However, if the Swedish climate aim of climate neutrality will be achieved, the climate impact from the operational energy will be minimal in 2050.

An important aspect in environmental evaluations of energy is methodological choice. In this project, the attributional perspective has been chosen, however, many studies imply the importance of margin energy, which the attributional perspective does not include.Furthermore, the attributional may present a lower climate impact than when other methodologies are chosen. It is therefore important to be aware of the methodology used and recommendations for future studies would be to investigate the methods more thouroughly.

Abstract [sv]

Under 2017 röstade svenska riksdagen igenom en klimatlag som begränsar klimatpåverkan till netto noll år 2045 från samtliga sektorer. Bygg- och fastighetssektorn är en sektor medstor klimatpåverkan och utgjorde år 2016 21 procent (12.8 miljoner ton) av totala utsläpp i Sverige. Historiskt sett har energianvändningen i drift av byggnader utgjort majoriteten av utsläppen från bygg- och fastighetssektorn och är därför en viktig del att utforska.

Skanska Sverige är ett svenskt byggföretag och detta arbete har gjorts i samarbete med företaget. För tillfället finns inget värde på CO2-utsläppen kopplade till energin i drift av byggnader (hushåll och lokaler) som byggts av Skanska Sverige och målet med denna rapport är därför att estimera CO2-utsläpp/m2 från olika byggnadstyper. Detta har upnåtts genom att bland annat utforska vilken data som finns tillgänglig och vad som saknats, samt att utforska metodval och energikällor för olika byggnader för att sedan omvandla energidatan til lgenererade CO2-utsläpp/m2. Vidare utfördes en känslighetsanalys genom att beräkna CO2/m2 för olika elnät (svenskt, nordiskt och europeiskt). Slutligen har även ett framtida energiscenario beräknat för år 2050 använts för att beräkna klimatutsläpp från driftenergin iframtiden.

Datan är baserad på två olika databaser, Base och Follow Up, där Base har endast redovisat estimerade energivärden som anges som intervall av nio kWh, samtidigt har Follow Up redovisat både estimerade och verifierade värden. På grund av större datatillgänglighet i Base valdes denna att huvudsakligen basera beräkningar på, men Follow Up och dess verifierade värden har använts till jämförelse. En kategorisering gjordes beroende av vilka byggnadstyper Skanska producerar mest av. De 7 kategorierna var småhus (villor och radhus), flerfamiljshus (lägenheter), kontor, sjukhem, förskolor, skolor och övrigt som inkluderade bland annat sjukhus och hotell.

Resultaten har visat att i alla kategorier utom två (skolor och kontor) är energianvändning högre när energin är verifierad än när den är estimerad. Rekommendationer är därför att öka antalet verifierade värden som samlas in, samtidigt som de estimerade även behöver öka för att öka pålitligheten av resultaten då många kategorier har begränsad mängd indata.

Skillnaden i beräknad klimatpåverkan är relativt stor mellan olika kategorier, beroende av energikällor för värme och varmvatten. Exempelvis är klimatpåverkan lägst för småhus då största andelen energitillförsel för småhus utgörs av elektricitet. Samtidigt är klimatpåverkan hög från kategori Other, vilket till stor del beror på att energianvändningen (kWh/m2) är hög, men även på grund av att majoriteten av energitillförseln kommer från fjärrvärme. Generellt sett har denna energikälla högre klimatpåverkan. Dock skall det observeras att skillnaden inom kategorier även den är stor, beroende av vilket elnät som valts. Exempelvis är skillnaden stor mellan småhus där elnätet som använts är svenskt, och när elnätet varit europeiskt.

Framtida utsläpp kommer vara betydligt lägre än idag, speciellt när det europeiska nätet väljs och EUs referensscenario är utforskat, men är även beroende av framtida elpriser och satsningar på förnybart. Ska det svenska målet om klimatneutralitet 2045 dock uppfyllas kommer klimatpåverkan vara minimal år 2050.

En viktig aspekt vid miljövärdering av energi är metodval. I detta projekt har bokföringsperspektivet använts, men flertalet studier har påpekat vikten av att inkludera marginalenergi, samt visat att perspektivet ofta redovisar lägre klimatpåverkan än till exempel konsekvensperspektivet. Det är därför viktigt att vara medveten om vilken metodik som väljs och framtida rekommendationer för studier är förslagsvis att utforska flera metoder,gärna parallellt för att se skillnader.

Place, publisher, year, edition, pages
2019. , p. 59
Series
TRITA-ABE-MBT ; 19501
Keywords [en]
Operational energy use, Climate impact, LCA methodology, Environmental evaluation of energy
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-254336OAI: oai:DiVA.org:kth-254336DiVA, id: diva2:1330887
Supervisors
Examiners
Available from: 2019-06-26 Created: 2019-06-26 Last updated: 2019-06-26Bibliographically approved

Open Access in DiVA

fulltext(1385 kB)25 downloads
File information
File name FULLTEXT01.pdfFile size 1385 kBChecksum SHA-512
62ac20ae4e608c04d0c8cabe60f1ece2f461bd9fa14deed1baf9c3a4031e8d5a11b21f1acd913afbcc6f77639895dd84b36b5018134a7d2436d4aa3109602fd7
Type fulltextMimetype application/pdf

By organisation
Sustainable development, Environmental science and Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 25 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 107 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf