Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The impact of bias on the predictive value of EHR driven machine learning models.
Halmstad University.
2019 (English)Independent thesis Basic level (university diploma), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The  rapid  digitization  in  the  health  care  sector  leads  to  an  increaseof  data.  This  routine  collected  data  in  the  form  of  electronic  healthrecords (EHR) is not only used by medical professionals but also hasa  secondary  purpose:  health  care  research.  It  can  be  opportune  touse this EHR data for predictive modeling in order to support medi-cal professionals in their decisions. However, using routine collecteddata  (RCD)  often  comes  with  subtle  biases  that  might  risk  efficientlearning of predictive models. In this thesis the effects of RCD on theprediction performance are reviewed.In particular we thoroughly investigate and reason if the performanceof  particular  prediction  models  is  consistent  over  a  range  of  hand-crafted sub-populations within the data.Evidence  is  presented  that  the  overall  prediction  score  of  the  algo-rithms trained by EHR significantly differ for some groups of patientsin  the  data.  A  method  is  presented  to  give  more  insight  why  thesegroups of patients have different scores.

Place, publisher, year, edition, pages
2019.
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:hh:diva-39960OAI: oai:DiVA.org:hh-39960DiVA, id: diva2:1329012
Educational program
Master's Programme in Embedded and Intelligent Systems, 120 credits
Presentation
2019-06-14, 10:44 (English)
Supervisors
Examiners
Available from: 2019-06-24 Created: 2019-06-24 Last updated: 2019-06-24Bibliographically approved

Open Access in DiVA

fulltext(3231 kB)38 downloads
File information
File name FULLTEXT02.pdfFile size 3231 kBChecksum SHA-512
a2ffe2c465adf35358a55f3de7c4eca2c92d4059a11528a797466d145adc67647d445bb7af6a12db69f30ee9611e10970d877d8c0766754d7f23f70ed70f9791
Type fulltextMimetype application/pdf

By organisation
Halmstad University
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 38 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 303 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf