Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Smart cropping tools with help of machine learning
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering.
2019 (English)Independent thesis Basic level (professional degree), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Machine learning has been around for a long time, the applications range from a big variety of different subjects, everything from self driving cars to data mining. When a person takes a picture with its mobile phone it easily happens that the photo is a little bit crooked. It does also happen that people takes spontaneous photos with help of their phones, which can result in something irrelevant ending up in the corner of the image. This thesis combines machine learning with photo editing tools. It will explore the possibilities how machine learning can be used to automatically crop images in an aesthetically pleasing way and how machine learning can be used to create a portrait cropping tool. It will also go through how a straighten out function can be implemented with help of machine learning. At last, it is going to compare this tools with other software automatic cropping tools.

Abstract [sv]

Maskinlärning har funnits en lång tid. Deras jobb varierar från flera olika ämnen. Allting från självkörande bilar till data mining. När en person tar en bild med en mobiltelefon händer det lätt att bilden är lite sned. Det händer också att en tar spontana bilder med sin mobil, vilket kan leda till att det kommer med något i kanten av bilden som inte bör vara där. Det här examensarbetet kombinerar maskinlärning med fotoredigeringsverktyg. Det kommer att utforska möjligheterna hur maskinlärning kan användas för att automatiskt beskära bilder estetsikt tilltalande samt hur maskinlärning kan användas för att skapa ett porträttbeskärningsverktyg. Det kommer även att gå igenom hur en räta-till-funktion kan bli implementerad med hjälp av maskinlärning. Till sist kommer det att jämföra dessa verktyg med andra programs automatiska beskärningsverktyg.

Place, publisher, year, edition, pages
2019. , p. 21
Keywords [en]
Machine Learning, Cropping
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:ltu:diva-74827OAI: oai:DiVA.org:ltu-74827DiVA, id: diva2:1328396
External cooperation
Once Upon
Subject / course
Student thesis, at least 15 credits
Educational program
Computer Game Programming, bachelor's level
Supervisors
Examiners
Available from: 2019-06-24 Created: 2019-06-20 Last updated: 2019-06-24Bibliographically approved

Open Access in DiVA

fulltext(38164 kB)23 downloads
File information
File name FULLTEXT01.pdfFile size 38164 kBChecksum SHA-512
520793ef9ef19eb5de5f432fff439a9d74ef4a47ffdea3a68e9483a8cd6fa0734c55f4d94e067b6eb50bfdcc85fe916fd646eeaef5819f0e7f1a952572414cc6
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Kanwar, John
By organisation
Department of Computer Science, Electrical and Space Engineering
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 253 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf