Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automating dataflow for a machine learning algorithm
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Machine learning algorithms can be used to predict the future demand for heat in buildings. This can be used as a decision basis by district heating plants when deciding an appropriate heat output for the plant. This project is based on an existing machine learning model that uses temperature data and the previous heat demand as input data. The model has to be able to make new predictions and display the results continuously in order to be useful for heating plant operators. In this project a program was developed that automatically collects input data, uses this data with the machine learning model and displays the predicted heat demand in a graph. One of the sources for input data does not always provide reliable data and in order to ensure that the program runs continuously and in a robust way, approximations of missing data have to be made. The result is a program that runs continuously but with some constraints on the input data. The input data needs to be able to provide some correct values within the last two days in order for the program run continuously. A comparison between calculated predictions and the actual measured heat demand showed that the predictions were in general higher than the actual values. Some possible causes and solutions were identified but are left for future work.

Abstract [sv]

Maskininlärnings-algoritmer kan användas för att göra prediktioner på den framtida efterfrågan på värme i fastigheter. Detta kan användas som ett beslutsunderlag av fjärrvärmeverk för att avgöra en lämplig uteffekt. Detta projektarbete baseras på en befintlig maskininlärnings-modell som använder sig av temperaturdata och tidigare värmedata som inparametrar. Modellen måste kunna göra nya prediktioner och visa resultaten kontinuerligt för att vara användbar för driftpersonal på fjärrvärmeverk. I detta projekt utvecklades ett program som automatiskt samlar in inparameterdata, använder denna data i maskininlärnings-modellen och visar resultaten i en graf. En av källorna för inparameterdata ger inte alltid pålitlig data och för att garantera att programmet körs kontinuerligt och på ett robust vis så måste man approximera inkorrekt data. Resultatet är ett program som kör kontinuerligt men med några restriktioner på inparameterdatan. Inparameterdatan måste ha åtminstone några korrekta värden inom de senaste två dagarna för att programmet ska köras kontinuerligt. En jämförelse mellan beräknade prediktioner och den verkliga uppmätta efterfrågan på värme visade att prediktionerna generellt var högre än de verkliga värdena. Några möjliga orsaker och lösningar identifierades men lämnas till framtida arbeten.

Place, publisher, year, edition, pages
2019. , p. 31
Series
TRITA-EECS-EX ; 2019:165
Keywords [en]
Automation, Dataflow, Machine learning, District heating
Keywords [sv]
Automation, Dataflöde, Maskininlärning, Fjärrvärme
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-253068OAI: oai:DiVA.org:kth-253068DiVA, id: diva2:1323995
Supervisors
Examiners
Available from: 2019-06-13 Created: 2019-06-13 Last updated: 2019-06-13Bibliographically approved

Open Access in DiVA

fulltext(666 kB)20 downloads
File information
File name FULLTEXT01.pdfFile size 666 kBChecksum SHA-512
3a0ae7c798af62afc18699f61c4668770c66c3d7ed7b80e29651e04f759f8e2fc2c2d838721d9e2f8c0a95b900a9bbf9bd21bfd40bb2757fd29a5b3059c57fc1
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 20 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf