Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting Diabetes Using Tree-based Methods
Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Statistics.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2019.
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:uu:diva-385358OAI: oai:DiVA.org:uu-385358DiVA, id: diva2:1323917
Available from: 2019-06-18 Created: 2019-06-12 Last updated: 2019-06-18Bibliographically approved

Open Access in DiVA

fulltext(921 kB)75 downloads
File information
File name FULLTEXT01.pdfFile size 921 kBChecksum SHA-512
3a8c11fff27f1049a64fd8897fb7214d1ddc5ff3dc2fba52d46bf950227681ce9a6f166d8ef6e0184acdebd026d73db9a9af236ca515d2c57cbc97e0f840c770
Type fulltextMimetype application/pdf

By organisation
Department of Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 75 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf