Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Achieving energy efficiency and indoor climate: A comparison of varying control system and building envelope modification
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This thesis investigates the performance of varied control systems in a office building in the southern parts of Sweden. The control system is designed according to standard EN15232 with three levels of building automation and control systems with a multi-zone approach. Highest standard, class A, is a demand control system with VAV controlled by temperature and CO2-levels in each zone. The lighting in class A is controlled by user demand and dimmers with regard to daylight to meet lighting regulations. The ventilation in the middle system, class B, is VAV controlled by temperature and demand in a zone. lighting is only on when a zone is used but no opportunity to dimmer. The reference object, class C, uses constant air volume CAV based on Swedish regulation and has lighting as in class B. The building envelope is varied between an existing model with 70Às building standard, according to todayÀs standard, and passive house standard in Sweden. All simulations is evaluated through energy performance and indoor climate in terms of temperature, PMV, PPD and CO2-levels.

Simulations showed that the class A system has the highest possibility to decrease the energy use compared to the other systems. The reduction in total energy use differs from about 9-27% compared to class C and about 29-34% in electric energy use. Simulations also showed that class A and B are more advantageous to apply in a passive house rather than in the existing building if the total energy is evaluated. With regards to electric energy use, the difference between the building envelopes is too small to state that any difference exists. Neither one of the systems corresponds to ”good” indoor climate in the critical zones, all three is between the range ”good” and ”acceptable” according to standard SE-EN15251. Class A and B show an overall improvement of PMV and PPD compared to class C system. The class B system is closest to fulfill a ”good” indoor climate, especially in the passive house model. Evaluation with respect to CO2-levels class A and C showed acceptable levels.

Place, publisher, year, edition, pages
2019. , p. 35
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:umu:diva-160090OAI: oai:DiVA.org:umu-160090DiVA, id: diva2:1323855
External cooperation
Siemens Building Technologies
Subject / course
Energiteknik
Educational program
Master of Science Programme in Energy Engineering
Supervisors
Examiners
Available from: 2019-06-13 Created: 2019-06-12 Last updated: 2019-06-13Bibliographically approved

Open Access in DiVA

fulltext(12649 kB)23 downloads
File information
File name FULLTEXT01.pdfFile size 12649 kBChecksum SHA-512
6496293e03d4f01ed2d72ddb882399a44ed53ac922bca5da3e5ea5ae9f46517d4d3f6be6ad51a18f4c71ab7f90da4b915fc592751526696256c0a61a06b30c08
Type fulltextMimetype application/pdf

By organisation
Department of Applied Physics and Electronics
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 130 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf