Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tidig detektering av skogsbränder med hjälp av högupplöst data: Automatisk identifiering med hjälp av bildbehandling
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Computer Science.
University of Gävle, Faculty of Engineering and Sustainable Development, Department of Computer and Geospatial Sciences, Computer Science.
2019 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Sustainable development
The essay/thesis is partially on sustainable development according to the University's criteria
Abstract [sv]

Skogsbränder är svåra att upptäcka i ett tidigt stadie, vilket leder till förödande konsekvenser. Hela 30 % av koldioxiden som atmosfären tar emot kommer från skogsbränder. Flera tusentals människor och djur mister livet eller tvingas lämna sina hem. Det finns idag flera tekniker som med varierande framgång kan upptäcka skogsbränder. I detta arbete skall en alternativ metod för rökdetektering utvecklas och testas. Metoden ska vara möjlig att appliceras på UAV (Unmanned Aerial Vehicle) teknik. Arbetet fokuserar på att skilja på brandrök och dimma med högupplöst data. Två algoritmer prövas, SDA (Statistisk distributions algoritm) och KBA (Kunskapsbaserad igenkännings algoritm). Den första testar statistiska distributioner för att hitta unika identifierare för rök. Den andra algoritmen är baserad på kunskapen om rök vad gäller spektrala och morfologiska egenskaper. Röken identifieras med hjälp av form, area och kanter. Algoritmen visade en precision med 90 % i bilder innehållande rök och en feldetektering med 20 % för bilder innehållande dimma.

Abstract [en]

It is very difficult to discover forest fires in an early stage which can lead to devastat-ing consequences. Today, 30% of the total carbon dioxide that is released in the at-mosphere comes from forest fires. Thousands of human beings and animals are killed or forced to leave their homes every year. There are a variety of techniques today that is being used for discovering forest fires but whom lack in accuracy or has problems with a large amount of false alarms. This paper is an experimental study to try to solve this issue. The proposed method in this paper could be applied on UAV (Unmanned Arial Vehicles). This study will focus on identifying smoke regions from forest fires and removing fog objects which has similar characteristics as smoke. Two algorithms are tested, SDA (Statistical distributions algorithm) and KBA (Knowledge-based identification algorithm). The SDA uses statistic distribution al-gorithm where smoke and fogs characteristics are identified. The second algorithm, KBA, is a knowledge-based algorithm, where the shape, area and edges of the smoke’s characteristics are applied. The algorithm showed a 90 % accuracy for find-ing smoke in images with a false alarm rate of 20 % in images of fog.

Place, publisher, year, edition, pages
2019. , p. 38
Keywords [en]
Statistic distribution, UAV, forest fires, fog, smoke
Keywords [sv]
Statistiska distributioner, UAV, skogsbränder, dimma, rök
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:hig:diva-29786OAI: oai:DiVA.org:hig-29786DiVA, id: diva2:1322997
Subject / course
Computer science
Educational program
Study Programme in Computer Science and Geographical Information Technology
Supervisors
Examiners
Available from: 2019-06-13 Created: 2019-06-11 Last updated: 2019-06-13Bibliographically approved

Open Access in DiVA

fulltext(1293 kB)23 downloads
File information
File name FULLTEXT01.pdfFile size 1293 kBChecksum SHA-512
61c19eff7e6c4eafb1b4311ed38ed126ae95622c5666d8447e465a41dfb8e4a0a32150a7064a0536a4db0fc35ee3c82dd06579a9d362f5dc93b1fa728e9ca933
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Åsberg, Philip
By organisation
Computer Science
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 69 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf