Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting and Explaining Customer Churn for an Audio/e-book Subscription Service using Statistical Analysis and Machine Learning
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Prediktion och förklaring av kundbortfall för en prenumerationstjänst för ljud- och e-böcker med användning av statistik analys och maskininlärning (Swedish)
Abstract [en]

The current technology shift has contributed to increased consumption of media and entertainment through various mobile devices, and especially through subscription based services. Storytel is a company offering a subscription based streaming service for audio and e-books, and has grown rapidly in the last couple of years. However, when operating in a competitive market, it is of great importance to understand the behavior and demands of the customer base. It has been shown that it is more profitable to retain existing customers than to acquire new ones, which is why a large focus should be directed towards preventing customers from leaving the service, that is preventing customer churn. One way to cope with this problem is by applying statistical analysis and machine learning in order to identify patterns and customer behavior in data. In this thesis, the models logistic regression and random forest are used with an aim to both predict and explain churn in early stages of a customer's subscription. The models are tested together with the feature selection methods Elastic Net, RFE and PCA, as well as with the oversampling method SMOTE. One main finding is that the best predictive model is obtained by using random forest together with RFE, producing a prediction score of 0.2427 and a recall score of 0.7699. The other main finding is that the explanatory model is given by logistic regression together with Elastic Net, where significant regression coefficient estimates can be used to explain patterns associated with churn and give useful findings from a business perspective.

Abstract [sv]

Det pågående teknologiskiftet har bidragit till en ökad konsumtion av digital media och underhållning via olika typer av mobila enheter, t.ex. smarttelefoner. Storytel är ett företag som erbjuder en prenumerationstjänst för ljud- och e-böcker och har haft en kraftig tillväxt de senaste åren. När företag befinner sig i en konkurrensutsatt marknad är det av stor vikt att förstå sig på kunders beteende samt vilka krav och önskemål kunder har på tjänsten. Det har nämligen visat sig vara mer lönsamt att behålla existerande kunder i tjänsten än hela tiden värva nya, och det är därför viktigt att se till att en befintlig kund inte avslutar sin prenumeration. Ett sätt att hantera detta är genom att använda statistisk analys och maskininlärningsmetoder för att identifiera mönster och beteenden i data. I denna uppsats används både logistisk regression och random forest med syfte att både prediktera och förklara uppsägning av tjänsten i ett tidigt stadie av en kunds prenumeration. Modellerna testas tillsammans med variabelselektionsmetoderna Elastic Net, RFE och PCA, samt tillsammans med översamplingsmetoden SMOTE. Resultatet blev att random forest tillsammans med RFE bäst predikterade uppsägning av tjänsten med 0.2427 i måttet precision och 0.7699 i måttet recall. Ett annat viktigt resultat är att den förklarande modellen ges av logistisk regression tillsammans med Elastic Net, där signifikanta estimat av regressionskoefficienterna ökar förklaringsgraden för beteenden och mönster relaterade till kunders uppsägning av tjänsten. Därmed ges användbara insikter ur ett företagsperspektiv.

Place, publisher, year, edition, pages
2019.
Series
TRITA-SCI-GRU ; 2019:085
Keywords [en]
Statistics, Machine learning, customer churn, random forest, logistic regression
Keywords [sv]
Statistik, Maskininlärning, random forest, logistisk regression, kundbortfall
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-252723OAI: oai:DiVA.org:kth-252723DiVA, id: diva2:1320400
External cooperation
Storytel
Subject / course
Mathematical Statistics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2019-06-04 Created: 2019-06-04 Last updated: 2019-06-07Bibliographically approved

Open Access in DiVA

fulltext(1176 kB)73 downloads
File information
File name FULLTEXT02.pdfFile size 1176 kBChecksum SHA-512
24caf8be116e0b33bdd1c7d55fcf37076643c9b141f58275c8854261dd58c7b8deee048061326bde64162fb54e37ba7c456856c5d7900a87f335dfad4974be67
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 79 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 277 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf