Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimizing LTE test traffic using search and expert algorithms
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This thesis investigates whether artificial intelligence techniques can replace the optimization process that is currently performed by experts for LTE/4G stability tests at Ericsson. The investigation covers the usage of search algorithms and expert systems and the thesis then implements a hybrid algorithm. This implemented solution is then tested upon three different architectures to judge how well it optimizes tests without causing further problems. The conclusion is that the implemented solution optimizes tests sufficiently but does so using only mobile users. To reflect reality better, static users would also need to be included in the optimization process.

Abstract [sv]

Syftet med det här exjobbet är att undersöka huruvida tekniker baserade på artificiell intelligens skulle kunna ersätta de optimeringssteg som för närvarande görs av experter under stabilitetstester för LTE/4G vid Ericsson. Bakgrundsundersökningen täcker sökalgoritmer och expertsystem och en hybridalgoritm har sedan implementerats. Ett experiment har därefter genomförts på tre olika testfall för att utvärdera den implementerade algoritmens förmåga att optimera test utan att introducera nya problem i testet. Slutsatsen är att optimeringen har tillräcklig effekt men att detta endast görs genom att omfördela mobila användare. Statiska användare skulle också behöva inkluderas i algoritmen för att göra dess optimeringar mer realistiska.

Place, publisher, year, edition, pages
2019. , p. 50
Series
TRITA-EECS-EX ; 2019:164
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-252730OAI: oai:DiVA.org:kth-252730DiVA, id: diva2:1320352
External cooperation
CSC
Supervisors
Examiners
Available from: 2019-06-12 Created: 2019-06-04 Last updated: 2019-06-12Bibliographically approved

Open Access in DiVA

fulltext(1100 kB)25 downloads
File information
File name FULLTEXT01.pdfFile size 1100 kBChecksum SHA-512
822c539b2dc3d7660c29eabb49b0c862190489856b8dfb3944c5d2abf6305b7de73357900028adff156abc69d384ff393845e0b62738c2606380491246acf194
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 25 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf