Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using Layer-wise Relevance Propagation and Sensitivity Analysis Heatmaps to understand the Classification of an Image produced by a Neural Network
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Användning av Layer-wise Relevance Propagationoch Sensitivity Analysis heatmaps för att förstå klassificering avbilder utförd av ett neuralt nätverk (Swedish)
Abstract [en]

Neural networks are regarded as state of the art within many areas of machine learning, however due to their growing complexity and size, a question regarding their trustability and understandability has been raised. Thus, neural networks are often being considered a "black-box". This has lead to the emersion of evaluation methods trying to decipher these complex networks. Two of these methods, layer-wise relevance propagation (LRP) and sensitivity analysis (SA), are used to generate heatmaps, which presents pixels in the input image that have an impact on the classification. In this report, the aim is to do a usability-analysis by evaluating and comparing these methods to see how they can be used in order to understand a particular classification. The method used in this report is to iteratively distort image regions that were highlighted as important by the two heatmapping-methods. This lead to the findings that distorting essential features of an image according to the LRP heatmaps lead to a decrease in classification score, while distorting inessential features of an image according to the combination of SA and LRP heatmaps lead to an increase in classification score. The results corresponded well with the theory of the heatmapping-methods and lead to the conclusion that a combination of the two evaluation methods is advocated for, to fully understand a particular classification. 

Abstract [sv]

Neurala nätverk betraktas som den senaste tekniken i många områden inom maskininlärning, dock har deras pålitlighet och förståelse ifrågasatts på grund av deras växande komplexitet och storlek. Således, blir neurala nätverk ofta sedda som en "svart låda". Detta har lett till utvecklingen  av evalueringsmetoder som ämnar att tolka dessa komplexa nätverk. Två av dessa metoder, layer-wise relevance propagation (LRP) och sensitivity analysis (SA), används för att generera färgdiagram som visar pixlar i indata-bilden som har en påverkan på klassificeringen. I den här rapporten, är målet att göra en användarbarhets-analys genom att utvärdera och jämföra dessa metoder för att se hur de kan användas för att förstå en specifik klassificering. Metoden som används i denna rapport är att iterativt förvränga bilder genom att följa de två färgdiagrams-metoderna. Detta ledde till insikterna att förvrängning av väsentliga delar av bilden, vilket framgick ur LRP färgdiagrammen, tydligt minskade sannolikheten för klassen. Det framkom även att förvrängning av oväsentliga delar, som framgick genom att kombinera SA och LRP färgdiagrammen, ökade sannolikheten för klassen. Resultaten stämde väl överens med teorin och detta ledde till slutsatsen att en kombination av metoderna rekommenderas för att förstå en specifik klassificering. 

Place, publisher, year, edition, pages
2019. , p. 58
Series
TRITA-EECS-EX ; 2019:371
Keywords [en]
Machine learning, neural networks, layer-wise relevance propagation, sensitivity analysis, image classification
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-252702OAI: oai:DiVA.org:kth-252702DiVA, id: diva2:1320166
Subject / course
Computer Science
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2019-09-11 Created: 2019-06-04 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

fulltext(3309 kB)1081 downloads
File information
File name FULLTEXT01.pdfFile size 3309 kBChecksum SHA-512
7509ff424557cfe13f705679a435da4d18769e03820c62a24fe537a4ac946da06ebb33a05d8e7e254b8c409ad5dfd539b9952cc4fb3129f8c1c832a882bc3e63
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Rosenlew, MatildaLjungdahl, Timas
By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1082 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 622 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf