Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of a beta=0.5 double spoke cavity with a fixed power coupler
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, FREIA.
Show others and affiliations
2019 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 927, p. 63-69Article in journal (Refereed) Published
Abstract [en]

ESS, the European Spallation Source, will adopt a single family of double spoke cavities for accelerating the beam from the normal conducting section to the first family of the elliptical superconducting cavities. It will be the first double spoke cavities in the world to be commissioned for a high power proton accelerator. The first double spoke cavity for the ESS project was tested with high power in the HNOSS cryostat at Uppsala University. A pulse-mode test stand based on a self-excited loop was used in this test. The qualification of the cavity package involves a double-spoke superconducting cavity, a fixed fundamental power coupler, tuner, a low-level radiofrequency (LLRF) system and a high-power radiofrequency (RF) station. The test represents an important verification milestone before the module assembly. This cavity had unfortunately a high dynamic loss of 12W @ 9 MV/m, where potential causes for such a high value have been studied and corresponding suggestions are listed. This paper presents the test configuration, RF conditioning history, first high power performance and experience of this cavity package.

Place, publisher, year, edition, pages
2019. Vol. 927, p. 63-69
Keywords [en]
Double spoke cavity, High power test, Self-excited loop
National Category
Accelerator Physics and Instrumentation
Identifiers
URN: urn:nbn:se:uu:diva-382240DOI: 10.1016/j.nima.2019.02.003ISI: 000462142700008OAI: oai:DiVA.org:uu-382240DiVA, id: diva2:1316139
Funder
EU, Horizon 2020, 730871Available from: 2019-05-16 Created: 2019-05-16 Last updated: 2019-05-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Li, HanJobs, MagnusSantiago Kern, RocioGoryashko, Vitaliy A.Hermansson, LarsBhattacharyya, AnirbanLofnes, TorGajewski, KonradFransson, KjellRuber, Roger
By organisation
FREIA
In the same journal
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Accelerator Physics and Instrumentation

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf