Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tekniker för att mäta kvalitet på nöt- och lammkött efter slakt
RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.ORCID iD: 0000-0002-2149-4586
RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.
RISE - Research Institutes of Sweden, Bioscience and Materials, Agrifood and Bioscience.ORCID iD: 0000-0003-3748-3918
2019 (Swedish)Report (Other academic)Alternative title
Techniques and methods to measure beef and lamb meat quality – a review (English)
Abstract [en]

This report reviews various measurement techniques and methods for assessing meat quality in lamb and beef after slaughter. It has mainly been based upon searches in databases of scientific literature, but also on discussions with industry people and colleagues.

The concept of meat quality is multifaceted and not easily defined. At the same time, most people who appreciate a good piece of meat would agree on that tough meat should be avoided. Hence, one property that has attained considerable attention in the literature is tenderness. Another characteristic that is usually emphasized as something positive is marbling, partly due to several studies that have indicated a relation between marbling and taste, juiciness and tenderness, all being properties that are important for a positive eating experience. Other features that attract attention are e.g. fatty acid composition, water retention ability, pH and colour.

The first attempts to find an objective method for tenderness measurement were based on mechanical methods. Essentially a spear-like object that was shot into the meat, while the resulting force was measured. For measurement of other parameters, such as pH, relatively traditional techniques were similarly used, based on more or less analogue technology. However, in recent decades there has been an increasing amount of studies using techniques that have benefited from the exponential development of digital and solid-state technologies. This development has e.g. led to easier ways to generate, measure and analyse electromagnetic, optical and acoustic signals.

A common approach in simpler measurement methods is trying to find an algorithm that is based on analysis of the frequency response of a signal that typically may be of electrical nature, ultrasound or light. Methods utilizing NIR have been particularly promising. One example of NIR equipment is NitFomTM, which is used for quality assessment of fat in pork meat. Methods based on measurement of electrical impedance have also, at least periodically, found establishment on the market.

There are also more advanced approaches, with the ambition to obtain spatial resolution of properties within the object under assessment. For measurements with three-dimensional resolution, primarily computer tomography imaging (CTI) and magnetic resonance imaging (MRI) are candidates, but also ultrasound. Hitachi-Aloka, makes ultrasonic equipment that can be used for scanning live animals, and another example of ultrasonic equipment is ECM EXAGO. MRI and CTI, however, are still too expensive, advanced and slow to be realistic alternatives for online measurement in the industry in the near future.

MRI and CTI are developments of NMR (Nuclear Magnetic Resonance) and X-ray. While also NMR seems to be a little too expensive for industrial applications, and primarily a lab tool, X-rays have been used in the meat industry since the 1970s, e.g. for measurement of fat content. One commercial product that early found establishment on the market is Anyl-Ray Oystar.

The development of the digital camera opened up for advanced image processing. There are several studies based on analysis of the kind of information that can be extracted from RGB images, so-called vision technology, but also on analysis of images that contain much more detailed spectral information, so-called hyper- or multispectral image analysis. However, analysis of the amount of information that is collected with the latter kind of technology requires large computation and data management capabilities. In this context, the continuing development towards more accessible computational power is highly valued.

While image processing based on RGB information has been successful in measuring more or less what is also perceived by human eye (in this context such parameters as marbling and colour), hyperspectral image analysis has shown potential to go one step further. In addition to visual properties, the technology has shown promising results in measuring such things as chemical composition (e.g. proportions of fat, protein and water), pH and tenderness. Much resources have been invested in development of functional systems for online classification of meat in the industry. The results have been promising, and companies have been started up for the purpose, but the definitive breakthrough has not yet taken place.

In conclusion, several attempts have been made to find objective measurement methods for assessing and potentially classifying meat quality. Many promising results have been reported in the literature. Yet it is difficult to make any recommendations on one single salvaging technique based upon these results. Possibly, the technology that is currently attracting the most attention and hopes is hyperspectral image analysis, especially if the intention is to find a technology, suitable for forming the basis for a classification system. In such a context, hyperspectral imaging is a technology that meets many positive criteria: it is contact-free, it has spatial resolution, it combines advantages of both vision and NIR. There are also several studies that show promising results, and there is still good hope that the technology will develop further in near-time (both in terms of price and performance), hand in hand with the trend in society towards increased digitalisation (i.e. development of artificial intelligence, better and cheaper sensors, increased access to computational power, connected devices, etc.).

Abstract [sv]

I arbetet att ta fram denna sammanställning av olika mättekniker och metoder för att bedöma kvalitet på lamm- och nötkött efter slakt, har vi främst baserat oss på sökningar i databaser över vetenskaplig litteratur. Utöver detta är den ett resultat av diskussioner med branschfolk och kollegor.

Begreppet köttkvalitet är mångfasetterat och inte så lätt att definiera. Samtidigt känner de flesta som uppskattar en god köttbit till att man gärna vill undvika ett segt kött, så en egenskap som ofta har fokuserats på i litteraturen är mörhet. En annan egenskap som brukar framhävas som positiv är marmorering, bland annat eftersom det finns studier som visar att köttets marmorering har ett samband med både smak, saftighet och mörhet, vilka är viktiga egenskaper för en positiv ätupplevelse. Fler egenskaper som rönt uppmärksamhet är bland annat fettsyresammansättning, vattenhållande förmåga, pH, och färg.

De första försöken att finna en objektiv metod för att mäta mörhet byggde på mekaniska mätmetoder, i stort sett ett spjutliknande föremål som sköts in i köttet, samtidigt som en kraft uppmättes. Mätning av andra parametrar, så som pH, byggde på liknande sätt på mer eller mindre traditionell analog teknik. De senaste decennierna har det dock tagit fart med studier på mätmetoder som gynnats av den exponentiella utvecklingen av digitala tekniker och halvledarteknik. Den utvecklingen har bland annat lett till enklare sätt att generera, mäta och analysera elektromagnetiska, optiska och akustiska signaler.

Vanligt angreppssätt i enklare mätmetoder är att försöka finna en algoritm som bygger på analys av frekvensresponsen vid mätningar av impedans, ultraljud eller ljus. Särskilt lovande bland den typen av mätmetodik har NIR varit. Exempel på NIR-utrustning är NitFomTM som används för kvalitetsbedömning av fett hos gris efter slakt. Även metoder baserade på mätning av elektrisk impedans har åtminstone periodvis funnit etablering på marknaden.

I andra änden finns mer avancerade angreppssätt, med försök att erhålla rumslig upplösning av mätobjektet. Vid mätning i 3D är det främst datortomografi och MRI (Magnetic Resonance Imaging – magnetisk resonansavbildning) som är aktuella, men även ultraljud. Som exempel på tillverkare av ultraljudsutrustning kan nämnas Hitachi-Aloka, som bland annat säljer utrustning för skanning av levande djur. Ett annat utrustningsexempel är ECM EXAGO. MRI och datortomografi framstår dock ännu som för dyra, avancerade och långsamma för att i närtid vara realistiska alternativ för online-mätning inom industrin.

MRI och datortomografi är egentligen utvecklingar av NMR (Nuclear Magnetic Resonance – kärnmagnetisk resonans) och röntgen. Medan även NMR fortfarande verkar vara lite för kostsam för industriella tillämpningar, och främst ett labb-verktyg, så har röntgen däremot ända sedan 70-talet använts inom slaktindustrin, bland annat för att mäta fettinnehåll – exempel på kommersiell produkt är Anyl-Ray Oystar.

Utvecklingen av digitalkameran öppnade för avancerad bildbehandling. Det finns flera studier baserade på den typ av information som finns i vanliga RGB-bilder, s.k. vision-teknik, men även på information i form av avbildningar med mycket mer detaljerat spektralt innehåll, s.k. multi- eller hyperspektral bildanalys. Att analysera all information som samlas in med den senare typen av teknik kräver dock stora beräknings- och datahanteringsresurser, så där är utvecklingen mot alltmer lättillgänglig dator- och beräkningskraft välkommen.

Medan bildbehandling baserad på RGB-information har haft framgång att mäta sådant som uppfattas av mänskliga ögat, så som marmorering och färg, så har hyperspektral bildanalys visat på potential att nå ett steg längre. Utöver visuella egenskaper har tekniken givit lovande resultat att mäta sådant som kemisk sammansättning (andel fett, protein, vatten etc.), pH och mörhet. Mycket resurser har satsats på att ta fram fungerande system för klassificering av kött inom industrin, resultat har varit lovande, och företag startats för ändamålet, men ännu har inte det definitiva genombrottet skett.

Som framgår ovan så har det gjorts åtskilliga försök att finna objektiva mätmetoder för att bedöma, och potentiellt klassificera, köttkvalitet. Många lovande resultat har rapporterats i litteraturen, ändå är det svårt att enbart utgående från den landa i klara rekommendationer om en enda saliggörande teknik. Kanske är den teknik som just nu tilldrar sig mest uppmärksamhet och förhoppningar hyperspektral bildanalys, och särskilt om man tänker sig att tekniken ska utgöra grund för ett klassificeringssystem. Det är en teknik som uppfyller många positiva kriterier: den är beröringsfri, den har rumslig upplösning, den kombinerar fördelar hos både vision och NIR, det finns flera studier som visar på lovande resultat, och det finns fortfarande gott hopp om att tekniken kommer utvecklas i närtid både pris- och prestandamässigt hand i hand med digitaliseringstrenden (d.v.s. utvecklingen av artificiell intelligens, bättre och billigare sensorer, ökad tillgång till datorkraft etc.) i samhället.  

Place, publisher, year, edition, pages
2019. , p. 48
Series
RISE Rapport ; 2019:52
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:ri:diva-38808ISBN: 978-91-88907-80-6 (electronic)OAI: oai:DiVA.org:ri-38808DiVA, id: diva2:1315830
Funder
Interreg Öresund-Kattegat-SkagerrakRegion Västra GötalandAvailable from: 2019-05-15 Created: 2019-05-15 Last updated: 2019-05-15Bibliographically approved

Open Access in DiVA

fulltext(687 kB)29 downloads
File information
File name FULLTEXT01.pdfFile size 687 kBChecksum SHA-512
416fbb4b7e3f6b24d948f452577eb80959fb0c2a07eab2397e05f1e57cc205e4a9f9d361a40d56803f6cf0cc4856e870bd7508fc6a846a83729681e222b1b5ae
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Isaksson, SvenLindahl, Cecilia
By organisation
Agrifood and Bioscience
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 29 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 99 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf