Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A comparison of two entropy stable discontinuous Galerkin spectral element approximations for the shallow water equations with non-constant topography
Mathematisches Institut, Universität zu Köln, Köln, Germany.ORCID iD: 0000-0002-5902-1522
Mathematisches Institut, Universität zu Köln, Köln, Germany.
2015 (English)In: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 301, p. 357-376Article in journal (Refereed) Published
Abstract [en]

In this work, we compare and contrast two provably entropy stable and high-order accurate nodal discontinuous Galerkin spectral element methods applied to the one dimensional shallow water equations for problems with non-constant bottom topography. Of particular importance for numerical approximations of the shallow water equations is the well-balanced property. The well-balanced property is an attribute that a numerical approximation can preserve a steady-state solution of constant water height in the presence of a bottom topography. Numerical tests are performed to explore similarities and differences in the two high-order schemes.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 301, p. 357-376
Keywords [en]
entropy stable, discontinuous Galerkin, skew-symmetric, shallow water equations, well-balanced, method comparison
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-156867DOI: 10.1016/j.jcp.2015.08.034ISI: 000362379300021Scopus ID: 2-s2.0-84941218547OAI: oai:DiVA.org:liu-156867DiVA, id: diva2:1315744
Available from: 2019-05-14 Created: 2019-05-14 Last updated: 2019-05-21Bibliographically approved

Open Access in DiVA

A comparison of two entropy stable discontinuous Galerkin spectral element approximations for the shallow water equations with non-constant topography(934 kB)41 downloads
File information
File name FULLTEXT01.pdfFile size 934 kBChecksum SHA-512
af161b13db938445e6e2009d8d22b63c721f0d729d5299887fca1769ee8f892757f6678416eeb95e487053d8b1e9c36f41d66e78b52d146d66b6a47ee378ff79
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Winters, Andrew Ross
In the same journal
Journal of Computational Physics
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 41 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf