CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt187",{id:"formSmash:upper:j_idt187",widgetVar:"widget_formSmash_upper_j_idt187",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt189_j_idt191",{id:"formSmash:upper:j_idt189:j_idt191",widgetVar:"widget_formSmash_upper_j_idt189_j_idt191",target:"formSmash:upper:j_idt189:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Combinatorics and zeros of multivariate polynomialsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH Royal Institute of Technology, 2019. , p. 42
##### Series

TRITA-SCI-FOU ; 2019:33
##### National Category

Discrete Mathematics
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-251303ISBN: 978-91-7873-210-4 (print)OAI: oai:DiVA.org:kth-251303DiVA, id: diva2:1314811
##### Public defence

2019-05-24, D3, Lindstedsvägen 5, Stockholm, 14:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt685",{id:"formSmash:j_idt685",widgetVar:"widget_formSmash_j_idt685",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt694",{id:"formSmash:j_idt694",widgetVar:"widget_formSmash_j_idt694",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt706",{id:"formSmash:j_idt706",widgetVar:"widget_formSmash_j_idt706",multiple:true});
##### Note

##### List of papers

This thesis consists of five papers in algebraic and enumerative combinatorics. The objects at the heart of the thesis are combinatorial polynomials in one or more variables. We study their zeros, coefficients and special evaluations. Hyperbolic polynomials may be viewed as multivariate generalizations of real-rooted polynomials in one variable. To each hyperbolic polynomial one may associate a convex cone from which a matroid can be derived - a so called hyperbolic matroid. In Paper A we prove the existence of an infinite family of non-representable hyperbolic matroids parametrized by hypergraphs. We further use special members of our family to investigate consequences to a central conjecture around hyperbolic polynomials, namely the generalized Lax conjecture. Along the way we strengthen and generalize several symmetric function inequalities in the literature, such as the Laguerre-Tur\'an inequality and an inequality due to Jensen. In Paper B we affirm the generalized Lax conjecture for two related classes of combinatorial polynomials: multivariate matching polynomials over arbitrary graphs and multivariate independence polynomials over simplicial graphs. In Paper C we prove that the multivariate $d$-matching polynomial is hyperbolic for arbitrary multigraphs, in particular answering a question by Hall, Puder and Sawin. We also provide a hypergraphic generalization of a classical theorem by Heilmann and Lieb regarding the real-rootedness of the matching polynomial of a graph. In Paper D we establish a number of equidistributions between Mahonian statistics which are given by conic combinations of vincular pattern functions of length at most three, over permutations avoiding a single classical pattern of length three. In Paper E we find necessary and sufficient conditions for a candidate polynomial to be complemented to a cyclic sieving phenomenon (without regards to combinatorial context). We further take a geometric perspective on the phenomenon by associating a convex rational polyhedral cone which has integer lattice points in correspondence with cyclic sieving phenomena. We find the half-space description of this cone and investigate its properties.

QC 20190510

Available from: 2019-05-10 Created: 2019-05-09 Last updated: 2019-05-10Bibliographically approved1. Non-representable hyperbolic matroids$(function(){PrimeFaces.cw("OverlayPanel","overlay1239622",{id:"formSmash:j_idt830:0:j_idt849",widgetVar:"overlay1239622",target:"formSmash:j_idt830:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Spectrahedrality of hyperbolicity cones of multivariate matching polynomials$(function(){PrimeFaces.cw("OverlayPanel","overlay1313629",{id:"formSmash:j_idt830:1:j_idt849",widgetVar:"overlay1313629",target:"formSmash:j_idt830:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Stable multivariate generalizations of matching polynomials$(function(){PrimeFaces.cw("OverlayPanel","overlay1313632",{id:"formSmash:j_idt830:2:j_idt849",widgetVar:"overlay1313632",target:"formSmash:j_idt830:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Equidistributions of mahonian statistics over pattern avoiding permutations$(function(){PrimeFaces.cw("OverlayPanel","overlay1180173",{id:"formSmash:j_idt830:3:j_idt849",widgetVar:"overlay1180173",target:"formSmash:j_idt830:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. The cone of cyclic sieving phenomena$(function(){PrimeFaces.cw("OverlayPanel","overlay1313631",{id:"formSmash:j_idt830:4:j_idt849",widgetVar:"overlay1313631",target:"formSmash:j_idt830:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2033",{id:"formSmash:j_idt2033",widgetVar:"widget_formSmash_j_idt2033",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2094",{id:"formSmash:lower:j_idt2094",widgetVar:"widget_formSmash_lower_j_idt2094",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2095_j_idt2097",{id:"formSmash:lower:j_idt2095:j_idt2097",widgetVar:"widget_formSmash_lower_j_idt2095_j_idt2097",target:"formSmash:lower:j_idt2095:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});