CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt187",{id:"formSmash:upper:j_idt187",widgetVar:"widget_formSmash_upper_j_idt187",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt189_j_idt191",{id:"formSmash:upper:j_idt189:j_idt191",widgetVar:"widget_formSmash_upper_j_idt189_j_idt191",target:"formSmash:upper:j_idt189:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Asymptotic and universal spectral estimates with applications in many-body quantum mechanics and spectral shape optimizationPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm, Sweden: KTH Royal Institute of Technology, 2019. , p. 57
##### Series

TRITA-SCI-FOU ; 2019:24
##### Keywords [en]

Spectral theory, shape optimization, semiclassical asymptotics, spectral inequalities, quantum mechanics
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-249837ISBN: 978-91-7873-199-2 (print)OAI: oai:DiVA.org:kth-249837DiVA, id: diva2:1313048
##### Public defence

2019-06-05, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt685",{id:"formSmash:j_idt685",widgetVar:"widget_formSmash_j_idt685",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt694",{id:"formSmash:j_idt694",widgetVar:"widget_formSmash_j_idt694",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt706",{id:"formSmash:j_idt706",widgetVar:"widget_formSmash_j_idt706",multiple:true});
##### Note

##### List of papers

This thesis consists of eight papers primarily concerned with the quantitative study of the spectrum of certain differential operators. The majority of the results split into two categories. On the one hand Papers B-E concern questions of a spectral-geometric nature, namely, the relation of the geometry of a region in d-dimensional Euclidean space to the spectrum of the associated Dirichlet Laplace operator. On the other hand Papers G and H concern kinetic energy inequalities arising in many-particle systems in quantum mechanics.

Paper A falls outside the realm of spectral theory. Instead the paper is devoted to a question in convex geometry. More precisely, the main result of the paper concerns a lower bound for the perimeter of inner parallel bodies of a convex set. However, as is demonstrated in Paper B the result of Paper A can be very useful when studying the Dirichlet Laplacian in a convex domain.

In Paper B we revisit an argument of Geisinger, Laptev, and Weidl for proving improved Berezin-Li-Yau inequalities. In this setting the results of Paper A allow us to prove a two-term Berezin-Li-Yau inequality for the Dirichlet Laplace operator in convex domains. Importantly, the inequality exhibits the correct geometric behaviour in the semiclassical limit.

Papers C and D concern shape optimization problems for the eigenvalues of Laplace operators. The aim of both papers is to understand the asymptotic shape of domains which in a semiclassical limit optimize eigenvalues, or eigenvalue means, of the Dirichlet or Neumann Laplace operator among classes of domains with fixed measure. Paper F concerns a related problem but where the optimization takes place among a one-parameter family of Schrödinger operators instead of among Laplace operators in different domains. The main ingredients in the analysis of the semiclassical shape optimization problems in Papers C, D, and F are combinations of asymptotic and universal spectral estimates. For the shape optimization problem studied in Paper C, such estimates are provided by the results in Papers B and E.

Paper E concerns semiclassical spectral asymptotics for the Dirichlet Laplacian in rough domains. The main result is a two-term asymptotic expansion for sums of eigenvalues in domains with Lipschitz boundary.

The topic of Paper G is lower bounds for the ground-state energy of the homogeneous gas of R-extended anyons. The main result is a non-trivial lower bound for the energy per particle in the thermodynamic limit.

Finally, Paper H deals with a general strategy for proving Lieb-Thirring inequalities for many-body systems in quantum mechanics. In particular, the results extend the Lieb-Thirring inequality for the kinetic energy given by the fractional Laplace operator from the Hilbert space of antisymmetric (fermionic) wave functions to wave functions which vanish on the k-particle coincidence set, assuming that the order of the operator is sufficiently large.

QC 20190502

Available from: 2019-05-02 Created: 2019-05-02 Last updated: 2019-05-02Bibliographically approved1. A bound for the perimeter of inner parallel bodies$(function(){PrimeFaces.cw("OverlayPanel","overlay931635",{id:"formSmash:j_idt830:0:j_idt849",widgetVar:"overlay931635",target:"formSmash:j_idt830:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On the remainder term of the Berezin inequality on a convex domain$(function(){PrimeFaces.cw("OverlayPanel","overlay1097234",{id:"formSmash:j_idt830:1:j_idt849",widgetVar:"overlay1097234",target:"formSmash:j_idt830:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Asymptotic shape optimization for Riesz means of the Dirichlet Laplacian over convex domains$(function(){PrimeFaces.cw("OverlayPanel","overlay1306051",{id:"formSmash:j_idt830:2:j_idt849",widgetVar:"overlay1306051",target:"formSmash:j_idt830:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Asymptotic Behaviour of Cuboids Optimising Laplacian Eigenvalues$(function(){PrimeFaces.cw("OverlayPanel","overlay1204560",{id:"formSmash:j_idt830:3:j_idt849",widgetVar:"overlay1204560",target:"formSmash:j_idt830:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain$(function(){PrimeFaces.cw("OverlayPanel","overlay1306053",{id:"formSmash:j_idt830:4:j_idt849",widgetVar:"overlay1306053",target:"formSmash:j_idt830:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Maximizing Riesz means of anisotropic harmonic oscillators$(function(){PrimeFaces.cw("OverlayPanel","overlay1306052",{id:"formSmash:j_idt830:5:j_idt849",widgetVar:"overlay1306052",target:"formSmash:j_idt830:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. Exclusion Bounds for Extended Anyons$(function(){PrimeFaces.cw("OverlayPanel","overlay1164658",{id:"formSmash:j_idt830:6:j_idt849",widgetVar:"overlay1164658",target:"formSmash:j_idt830:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

8. Lieb-Thirring inequalities for wave functions vanishing on the diagonal set$(function(){PrimeFaces.cw("OverlayPanel","overlay1306064",{id:"formSmash:j_idt830:7:j_idt849",widgetVar:"overlay1306064",target:"formSmash:j_idt830:7:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2033",{id:"formSmash:j_idt2033",widgetVar:"widget_formSmash_j_idt2033",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2094",{id:"formSmash:lower:j_idt2094",widgetVar:"widget_formSmash_lower_j_idt2094",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2095_j_idt2097",{id:"formSmash:lower:j_idt2095:j_idt2097",widgetVar:"widget_formSmash_lower_j_idt2095_j_idt2097",target:"formSmash:lower:j_idt2095:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});