Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Speech recognition for telephone conversations in Icelandic using Kaldi
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Igenkänning av tal på isländska över telefon med verktyget Kaldi (Swedish)
Abstract [en]

In this thesis we train and evaluate an Automatic Speech Recognition system for phone communication in Icelandic. We use Kaldi, an open source toolkit, to build both GMM-HMM and Neural Network based models for general speech recognition in Icelandic. A simple telephone based dialogue system is built to test the speech recognition model in a real world scenario by calling users with a simple back and fourth dialogue between the user and the system. The resulting Speech Recognition models offer improved results compared to baseline systems in terms of Word Error Rate and are found to be successful for use in telephone communication.

Abstract [sv]

I denna uppsats tränar och utvärderar vi ett automatiskt taligenkänningssystem för telefonkommunikation på isländska. Vi använder Kaldi, ett ramverk med öppen källkod, så tränas både GMM-HMM och neurala nätverksbaserade modeller för generell taligenkänning på isländska. Ett telefonbaserat system byggs för att testa modellerna i ett verklighetstroget scenario. Det bygger på en enkel dialog mellan användaren och systemet. De resulterande taligenkänningsmodellerna visar sig vara framgångsrika vid användning inom telefonkommunikation.

Place, publisher, year, edition, pages
2019.
Series
TRITA-EECS-EX ; 2019:91
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-250463OAI: oai:DiVA.org:kth-250463DiVA, id: diva2:1307982
Supervisors
Examiners
Available from: 2019-05-03 Created: 2019-04-30 Last updated: 2019-05-03Bibliographically approved

Open Access in DiVA

fulltext(557 kB)63 downloads
File information
File name FULLTEXT01.pdfFile size 557 kBChecksum SHA-512
658c816f0ef86080fe08967fa36bc60daa22b8b903c4b12993bd62e557f9437710a75b3d8bf7eb3d3c877718732be924d5cc4bdaf230b3b352bfc9718bb52c07
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 63 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 360 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf