Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Datainsamling till simulering med hjälp av videokamera och bildbehandling
University of Skövde, School of Engineering Science.
University of Skövde, School of Engineering Science.
2019 (Swedish)Independent thesis Basic level (university diploma), 20 credits / 30 HE creditsStudent thesisAlternative title
Data acquisition for simulation using video camera and image processing (English)
Abstract [sv]

Syftet med studien är att undersöka möjligheten att använda en videokamera och bildbehandlings-algoritmer för att inhämta data till simulering genom att spåra personers rörelse. Den teoretiska referensramen och litteraturstudie används för att få en fördjupad kunskap om simulering och hur personer spåras med spårningsalgoritmer. För att undersöka möjligheten har en kod skapats som använder bildbehandlingsalgoritmer från OpenCv. Algoritmerna som används har utvärderats med fyra experiment i två olika miljöer, en affärsmiljö och en industrimiljö. Experimenten har använts till att spela in videomaterial på personernas förflyttning i miljöerna. Videomaterialen har använts med den skapade koden och bildbehandlingsalgoritmer för att analysera spårnings-algoritmernas prestanda och om tider kan erhållas. Resultatet från analysen påvisar att tider kan erhållas om en person spåras i videoscenen. De erhållna tiderna har jämfört med manuella tidsstudier och påvisar att medelfelet är 0,1 sekunder och standardavvikelsen är 0,27 sekunder. När det är flera personer som spåras i videoscenen visar resultatet att de inte är möjligt att erhålla tider till simulering. Detta beror på att algoritmerna misslyckas att spåra, faktorer som samman-fogning, färg, riktning, ocklusion och förflyttning av statiska objekt påverkar spårningen på algoritmerna. Detta bidrar till att tiderna som erhålls inte är tillförlitliga och därmed har inte tiderna jämfört med manuella tidsstudier.

Abstract [en]

The purpose of the study is to investigate the possibility of using a video camera and the image processing algorithms to obtain data for simulation through tracking people’s movement. The theoretical frame of reference and literature studies are used to get an in-depth knowledge about simulation and how people are tracked with tracking algorithms. To investigate the possibility, a code has been created that uses image processing algorithms from OpenCv. These algorithms that have been used have been evaluated with four experiments in two different environments, one store environment and one industrial environment. The experiments have been used to record video on people’s movements in these two environments. The video recordings have been made with the created code and the image processing algorithms to analyze the performance of the tracking algorithms and if time can be obtained. The result of the analysis shows that the time can be obtained if a person is used in the video scene. The obtained times have been compared with manual time studies. The result shows that the average error is 0, 1 seconds and the standard deviation is 0, 27 seconds.

When there are more people that are being tracked in the video scene, the result shows that they are not possible to obtain times for simulation. This is because the algorithms are failing to track, factors such as joining, color, direction, occlusion and movement of static objects affect the tracking of the algorithms. This contributes that the times obtained are not reliable and thereby have not been compared with manual time’s studies.

Place, publisher, year, edition, pages
2019. , p. 57
Keywords [sv]
videospårning, simulering, OpenCv, objektdetektion, objektklassificering, objektspårning, bildbehandling
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
URN: urn:nbn:se:his:diva-16830OAI: oai:DiVA.org:his-16830DiVA, id: diva2:1306784
Subject / course
Automation Engineering
Educational program
Manufacturing Technology - Study Programme
Supervisors
Examiners
Available from: 2019-05-03 Created: 2019-04-24 Last updated: 2019-05-03Bibliographically approved

Open Access in DiVA

fulltext(1456 kB)33 downloads
File information
File name FULLTEXT01.pdfFile size 1456 kBChecksum SHA-512
2b5f077762d917ae9e049428ae24385e936e9378c762d8833b2fc539b5c453d5cb6c44e2f663459065299eab17984372c93d5fb18b5836f83bc00075e4f1baff
Type fulltextMimetype application/pdf

By organisation
School of Engineering Science
Other Engineering and Technologies not elsewhere specified

Search outside of DiVA

GoogleGoogle Scholar
Total: 33 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf