Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Workflow management and scheduling in a cloud computing context
KTH, School of Electrical Engineering and Computer Science (EECS).
2019 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Public cloud providers have had a tremendous impact on the software engineering world recently by offering on-demand computing infrastructures and scalable managed solutions.

The goal of this master degree project is to determine whether these services offered by public cloud providers can improve the design of workflow management and scheduling systems for data-driven workflows.

A cloud based architecture for a distributed workflow management system was designed, implemented and experimented on. It allowed to confirm the value of cloud computing solutions to solve workflow scheduling problems, by allowing to efficiently launch workloads on elastic computing resources.

Abstract [sv]

På senaste tiden har public cloud-leverantörer haft stor effekt på mjukvaruingenjörsvetenskapen genom att föreslå databehandlingsinfrastrukturer på begäran samt skalbara lösningar.

Målet med detta examensarbete är att fastställa om dessa tjänster, som föreslås av public cloud-leverantörer, kan förbättra designen av arbetsflödeshantering och schemaläggningssystem för datastyrda arbetsflöden.

En molnbaserad arkitektur för ett distribuerat system av arbetsflödeshantering utformades, implementerades och testades. Genom effektivt utnyttjande av elastiska datorresurser kunde värdet av molnlösningar för att lösa schemaläggningsproblem i arbetsflöden bekräftas.

Place, publisher, year, edition, pages
2019. , p. 61
Series
TRITA-EECS-EX ; 2019:44
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-249714OAI: oai:DiVA.org:kth-249714DiVA, id: diva2:1305761
External cooperation
Openergy
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2019-04-30 Created: 2019-04-18 Last updated: 2019-04-30Bibliographically approved

Open Access in DiVA

fulltext(1094 kB)39 downloads
File information
File name FULLTEXT01.pdfFile size 1094 kBChecksum SHA-512
ae1b64314c0806497470697cd8cd84542cacf571ab4ff8a53cb46686ef325427748afd2d4dc0878bf7fb75831bd1781a5169f3210de454d6a473db4dbcea404b
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 39 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf