CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt187",{id:"formSmash:upper:j_idt187",widgetVar:"widget_formSmash_upper_j_idt187",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt189_j_idt191",{id:"formSmash:upper:j_idt189:j_idt191",widgetVar:"widget_formSmash_upper_j_idt189_j_idt191",target:"formSmash:upper:j_idt189:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Topics in perturbation theory: From IBP identities to integrandsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis, 2019. , p. 64
##### Series

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1805
##### Keywords [en]

Perturbation theory, Feynman Integrals, Integrable field theories, Correlation functions.
##### National Category

Subatomic Physics
##### Research subject

Theoretical Physics
##### Identifiers

URN: urn:nbn:se:uu:diva-381810ISBN: 978-91-513-0648-3 (print)OAI: oai:DiVA.org:uu-381810DiVA, id: diva2:1304836
##### Public defence

2019-06-07, Room Å4001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt685",{id:"formSmash:j_idt685",widgetVar:"widget_formSmash_j_idt685",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt694",{id:"formSmash:j_idt694",widgetVar:"widget_formSmash_j_idt694",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt706",{id:"formSmash:j_idt706",widgetVar:"widget_formSmash_j_idt706",multiple:true}); Available from: 2019-05-17 Created: 2019-04-15 Last updated: 2019-06-17
##### List of papers

In this thesis we present different topics in perturbation theory. We start by introducing the method of integration by parts identities, which reduces a generic Feynman integral to a linear combination of a finite basis of master integrals. In our analysis we make use of the Baikov representation as this form gives a nice framework for generating efficiently the identities needed to reduce integrals. In the second part of the thesis we briefly explain recent developments in the integration of Feynman integrals and present a method to bootstrap the value of p-integrals using constraints from certain limits of conformal integrals. We introduce also another method to obtain p-integrals at l-loops by cutting vacuum diagrams at l+1-loops. In the last part of the thesis we present recent developments in N=4 SYM to compute structure constants. We use perturbation theory to obtain new results that can be tested against this new conjecture. Moreover we use integrability based methods to constrain correlation function of protected operators.

1. AZURITE: An algebraic geometry based package for finding bases of loop integrals$(function(){PrimeFaces.cw("OverlayPanel","overlay1180185",{id:"formSmash:j_idt830:0:j_idt849",widgetVar:"overlay1180185",target:"formSmash:j_idt830:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Konishi OPE coefficient at the five loop order$(function(){PrimeFaces.cw("OverlayPanel","overlay1272915",{id:"formSmash:j_idt830:1:j_idt849",widgetVar:"overlay1272915",target:"formSmash:j_idt830:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals$(function(){PrimeFaces.cw("OverlayPanel","overlay1253658",{id:"formSmash:j_idt830:2:j_idt849",widgetVar:"overlay1253658",target:"formSmash:j_idt830:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Five-loop massless propagator integrals$(function(){PrimeFaces.cw("OverlayPanel","overlay1304834",{id:"formSmash:j_idt830:3:j_idt849",widgetVar:"overlay1304834",target:"formSmash:j_idt830:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections$(function(){PrimeFaces.cw("OverlayPanel","overlay1259210",{id:"formSmash:j_idt830:4:j_idt849",widgetVar:"overlay1259210",target:"formSmash:j_idt830:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. All five-loop planar four-point functions of half-BPS operators in N = 4 SYM$(function(){PrimeFaces.cw("OverlayPanel","overlay1272984",{id:"formSmash:j_idt830:5:j_idt849",widgetVar:"overlay1272984",target:"formSmash:j_idt830:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt2033",{id:"formSmash:j_idt2033",widgetVar:"widget_formSmash_j_idt2033",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2094",{id:"formSmash:lower:j_idt2094",widgetVar:"widget_formSmash_lower_j_idt2094",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2095_j_idt2097",{id:"formSmash:lower:j_idt2095:j_idt2097",widgetVar:"widget_formSmash_lower_j_idt2095_j_idt2097",target:"formSmash:lower:j_idt2095:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});