Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Plastic Shrinkage Cracking of Self-compacting Concrete: Influence of Capillary Pressure and Dormant Period
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.ORCID iD: 0000-0001-8586-2651
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.ORCID iD: 0000-0002-3997-3083
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.ORCID iD: 0000-0001-6287-2240
2019 (English)In: Nordic Concrete Research, ISSN 0800-6377, Vol. 60, no 1, p. 67-88Article in journal (Refereed) Published
Abstract [en]

This research investigates the effect of capillary pressure and the length of the hydration dormant period on the plastic shrinkage cracking tendency of SCC by studying specimens produced with different w/c ratios, cement types and SP dosages.

The results show, that the cracking tendency of SCC was the lowest in case of w/c ratio between 0.45 and 0.55, finer rapid hardening cement and lower dosage of SP. The dormant period was prolonged by increasing the w/c ratio, using coarser cement and higher SP dosage. It was concluded that the cracking tendency of concrete is a function of the capillary pressure build-up rate and the length of the dormant period.

Place, publisher, year, edition, pages
Norsk betongförening , 2019. Vol. 60, no 1, p. 67-88
Keywords [en]
plastic shrinkage, cracking, evaporation, capillary pressure, dormant period, self-compacting concrete.
National Category
Other Materials Engineering
Research subject
Building Materials
Identifiers
URN: urn:nbn:se:ltu:diva-73170DOI: 10.2478/ncr-2019-0012ISI: 000475508100006OAI: oai:DiVA.org:ltu-73170DiVA, id: diva2:1295615
Note

Validerad;2019;Nivå 2;2019-07-23 (svasva)

Available from: 2019-03-12 Created: 2019-03-12 Last updated: 2019-08-16Bibliographically approved
In thesis
1. Plastic Shrinkage Cracking In Concrete: Mitigation and Modelling
Open this publication in new window or tab >>Plastic Shrinkage Cracking In Concrete: Mitigation and Modelling
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Plastiska krympsprickor I betong : begränsning och modellering
Abstract [en]

Early-age (up to 24 hours after casting) cracking may become problematic in any concrete structure. It can have a negative influence on the aesthetics of the concrete structure, as well as decreasing the durability and serviceability by facilitating the ingress of harmful materials into the concrete bulk. Moreover, these cracks may expand gradually during the member’s service-life due to long-term shrinkage and/or loading. Early-age cracking is caused by two driving forces: 1) plastic shrinkage cracking which is a physical phenomenon and occurs due to rapid and excessive loss of moisture, mainly in form of evaporation, 2) chemical reactions between cement and water which causes autogenous shrinkage. In this PhD project only the former is investigated.

Rapid evaporation from the surface of fresh concrete causes negative pressure, known as capillary pressure, in the pore system. This pressure pulls the solid particles together and decreases the inter-particle distances, causing the whole concrete element to shrink. If this contraction is hindered in any way, the induced tensile stresses may exceed the low tensile strength of the concrete and cracking starts. The phenomenon, occurring shortly after casting while the concrete is still in the plastic stage, is mainly observed in elements with high surface to volume ratio such as slabs and pavements.

Many parameters may affect the probability of plastic shrinkage cracking. Among others, effect of water/cement ratio (w/c), fines, admixtures, geometry of the element, ambient conditions (i.e. temperature, relative humidity, wind velocity and solar radiation), etc. has been investigated previously. In the presented research, in addition to studying the influence of various parameters, i.e. w/c, cement type, coarse aggregate content, superplasticizer dosage, admixtures, and steel fibres, effort is made to reach a better and more comprehensive understanding about the cracking governing mechanism. Evaporation, capillary pressure evolution and hydration rate are particularly investigated in order to identify their relationship.

This project started with extensive literature study which is summarized in Paper I. Then, the main objective was set upon which series of experiments were defined. The utilized methods, material, investigated parameters, and results are presented in Papers II-IV. A model was, then, proposed in Paper V, to estimate the cracking severity of the plastic concrete.

It has been observed that evaporation is the driving force behind the plastic shrinkage crackingin concrete. However, a correlation between evaporation, rate of capillary pressure development and the duration of dormant period governs the severity of the phenomenon. Among other things, the results show that rapid capillary pressure development in the pore network accompanied by slower hydration significantly increases the cracking risk.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2019
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
National Category
Civil Engineering Other Materials Engineering
Research subject
Structural Engineering
Identifiers
urn:nbn:se:ltu:diva-73351 (URN)978-91-7790-344-4 (ISBN)978-91-7790-345-1 (ISBN)
Public defence
2019-05-10, F1031, Luleå, 13:00 (English)
Opponent
Supervisors
Available from: 2019-04-02 Created: 2019-03-28 Last updated: 2019-10-28Bibliographically approved

Open Access in DiVA

fulltext(977 kB)35 downloads
File information
File name FULLTEXT01.pdfFile size 977 kBChecksum SHA-512
61573508f805a488ac2bc0328514ad80d78aae937449d7afd9c6e085f5964a2952757cf8bb3d5b44325392517fbe0166acd3df98856ad829e7c30aafdbadb50e
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Sayahi, FaezEmborg, MatsHedlund, HansCwirzen, Andrzej
By organisation
Structural and Fire Engineering
In the same journal
Nordic Concrete Research
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 35 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 131 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf