Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Monitoring of a heat pump system using deep borehole heat exchangers
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Prestanda uppföljning av ett bergvärmepumpssystem med djupa borrhål (Swedish)
Abstract [en]

Sweden has been one of the first countries in the world to use ground-source heat pumps (GSHP) to supply heating and cooling to its buildings. Today, it is the leading country in Europe and new installations tend to have larger capacities. The use of deeper borehole heat exchangers (BHE) is an opportunity to extract larger amounts of heat over small land areas. However, there are only few case studies on BHE deeper than 300 m, hence such systems may be optimized.

This study focuses on a deep GSHP system recently installed in central Stockholm, composed of four 510 m deep BHE. The objectives were to get the system ready for monitoring and to analyze the first sets of data recorded. First, a review of all the sensors already installed, of the data needed, and of the different ways to extract it, has been led. Practically, an acquisition system has been set up and connected to new and existing sensors such as thermometers and flow-meters. Theoretically, a method to derive the thermodynamic cycles of the different heat pumps has been determined. It led to the determination of COPs for several days during late spring 2017. The system globally showed reasonable efficiency, with an overall performance factor (equivalent to SPF2) of 3.42 including the circulation pumps of the ground loop. However, it could certainly be improved in several ways, for example by avoiding short cycles or by finding an optimum flow in the secondary ground loop. Furthermore, these results should be juxtaposed with those that will be obtained during winter, when the heating demand will be the highest.

Abstract [sv]

Sverige var ett av de första länderna i världen som använt bergvärmepumpar (GSHP) för att täcka värme- och kylbehoven i byggnader. Sverige är, idag, det ledande landet i Europa och nya bergvärmeanläggningar tenderar att vara större, åtminstone kapacitetsmässigt. Användningen av djupa borrhålsvärmeväxlare (BHEs) ger möjligheten att extrahera en större mängd värme i areabegränsade egendomar. Det finns dock bara få studiefall om anläggningar med borrhål djupare än 300 m och de anläggningarna skulle därför kunna optimeras.

Den här studien fokuserar på ett GSHP system med djupa borrhål som nyligen installerades i centrala Stockholm och som består av fyra 510 m djupa borrhål, bland annat. Målen var att förberedda prestandauppföljningssystemet och analysera de första insamlade mätningarna. Första steget var att samla information om de sensorerna som redan var installerade, bestämma vilka mätvärde var nödvändiga och hur skulle de kunna mättas. Praktiskt har en datainsamlingsenhet iordningställts och anslutits till befintliga och nya sensorer såsom temperaturgivare och flödesmätare. Teoretiskt har en metod frambringats för att bestämma den termodynamiska cykeln av varje värmepump. Det möjliggjorde beräkningen av COP:n under vissa dagar under våren 2017. Globalt visade systemet rimlig prestanda med en prestandafaktor (likvärdig SPF2) på 3.42, inklusive cirkulationspumpar i bergvärmeskretsen. Det skulle dock kunna förbättras på olika sätt, t.ex. genom att undvika kort-cykling av kompressorer eller gnom att hitta ett optimalt köldbärarflöde i bergvärmeskretsen. Resultaten som det här arbetet kom fram till borde dessutom jämföras med en liknande analys under vintertid, då värmebehovet är högst.

Place, publisher, year, edition, pages
2018. , p. 46
Series
TRITA-ITM-EX 2018 ; 753
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-245880OAI: oai:DiVA.org:kth-245880DiVA, id: diva2:1294802
Supervisors
Examiners
Available from: 2019-03-08 Created: 2019-03-08 Last updated: 2019-03-08Bibliographically approved

Open Access in DiVA

fulltext(6653 kB)50 downloads
File information
File name FULLTEXT01.pdfFile size 6653 kBChecksum SHA-512
8db9dfd140a76ebd2c36bad4f564dd4e242405489217126ea8134db79ec9b97f3701ad7f2fa3747672b1d1c5dae78ec864201cd399ebfe1ccce796691e5d64af
Type fulltextMimetype application/pdf

By organisation
Energy Technology
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 50 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf