Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Need for Speed – A Systems Perspective on the Environmental Cost of High Top Speeds in German Passenger Cars
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Automobiles have evolved from meeting transportation needs of their owners a century ago, to addressing transportation desires of their owners today. They now meet the owner’s desire for status though sign values such as speed, safety, environmental consciousness, sexual desire, freedom, masculinity etc., and are anthropomorphised by creatively invented names. It comes as little surprise that the transport sector alone accounts for nearly a quarter of the global greenhouse gas (GHG) emissions – levels that are further expected to double by 2050. Germany, which is the highest emitter of GHGs in Europe recorded nearly 1 Gt GHG emissions in 2016 alone. Such high concentration of emissions from the German transport sector can in some part be attributed to the autobahn network in Germany – 2/3rd of which have no mandated speed limits, thus encouraging the car manufacturers to design cars that are operation worthy even at speeds of up to 250 km/ h (or higher), that are unrepresentative of real world driving conditions.

This thesis aims at quantifying the environmental impact of this design for high top speeds in passenger cars from a systems perspective. This is achieved by using a comparative lifecycle assessment of passenger cars from a cradle-to-grave approach. A number of passenger car specifications are modelled which include a representative base case for a German car, vehicle light-weighting approach through material substitution, and down engineered car. The results of the comparative lifecycle assessment showed that, light-weighting a passenger car through material substitution showed a reduction of between 3 to 9% in impact categories such climate change, particulate matter formation, fossil depletion, human toxicity and terrestrial eco-toxicity as compared to the baseline levels. Higher reductions of nearly 12% and 31%, were observed in the marine eco-toxicity and the metal depletion impact categories respectively. However, there exists potential to reduce up to 40% in all selected environmental impact categories when comparing baseline passenger car to a down engineered one. Further, light-weighting a passenger car through higher material substitution showed an increase in the indirect energy consumption and higher impacts in ten out of the eighteen impact categories, as compared to a lower material substitution option. Thus, an important conclusion drawn from this thesis is that when implementing steps to reduce environmental impacts of passenger cars, shift of burden must be avoided between the lifecycle phases as well as the impact categories.

Place, publisher, year, edition, pages
2018. , p. 84
Series
TRITA-ABE-MBT ; 18424
Keywords [en]
Lifecycle assessment, Private cars, Down-engineering
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-234232OAI: oai:DiVA.org:kth-234232DiVA, id: diva2:1245267
External cooperation
Technische Universität Berlin/ Mercator Research Institute on Global Commons and Climate Change
Presentation
2018-08-13, 20:28 (English)
Supervisors
Examiners
Available from: 2018-09-07 Created: 2018-09-04 Last updated: 2018-09-07Bibliographically approved

Open Access in DiVA

fulltext(1188 kB)53 downloads
File information
File name FULLTEXT02.pdfFile size 1188 kBChecksum SHA-512
4246df2e403b8b86664bc0e65e50806a5d7adb75b54ccdc2cddcef9ef2496d2732828dca433df630be72b0fc81461a0f2e7ccc9635d0783f69075b3fc39034cd
Type fulltextMimetype application/pdf

By organisation
Sustainable development, Environmental science and Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 53 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 131 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf