Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Major impact from a minor merger The extraordinary hot molecular gas flow in the Eye of the NGC 4194 Medusa galaxy
Show others and affiliations
Number of Authors: 92018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 615, article id A122Article in journal (Refereed) Published
Abstract [en]

Context. Minor mergers are important processes contributing significantly to how galaxies evolve across the age of the Universe. Their impact on the growth of supermassive black holes and star formation is profound - about half of the star formation activity in the local Universe is the result of minor mergers. Aims. The detailed study of dense molecular gas in galaxies provides an important test of the validity of the relation between star formation rate and HCN luminosity on different galactic scales - from whole galaxies to giant molecular clouds in their molecular gas-rich centers. Methods. We use observations of HCN and HCO+ 1-0 with NOEMA and of CO 3-2 with the SMA to study the properties of the dense molecular gas in the Medusa merger (NGC 4194) at 1 resolution. In particular, we compare the distribution of these dense gas tracers with CO 2-1 high-resolution maps in the Medusa merger. To characterize gas properties, we calculate the brightness temperature ratios between the three tracers and use them in conjunction with a non-local thermodynamic equilibrium (non-LTE) radiative line transfer model. Results. The gas represented by HCN and HCO+ 1-0, and CO 3-2 does not occupy the same structures as the less dense gas associated with the lower-J CO emission. Interestingly, the only emission from dense gas is detected in a 200 pc region within the Eye of the Medusa, an asymmetric 500 pc off-nuclear concentration of molecular gas. Surprisingly, no HCN or HCO(+ )is detected for the extended starburst of the Medusa merger. Additionally, there are only small amounts of HCN or HCO+ associated with the active galactic nucleus. The CO 3-2/2-1 brightness temperature ratio inside the Eye is similar to 2.5 - the highest ratio found so far - implying optically thin CO emission. The CO 2-1/HCN 1-0 (similar to 9.8) and CO 2-1/HCO+ 1-0 (similar to 7.9) ratios show that the dense gas filling factor must be relatively high in the central region, consistent with the elevated CO 3-1/2-1 ratio. Conclusions. The line ratios reveal an extreme, fragmented molecular cloud population inside the Eye with large bulk temperatures (T > 300 K) and high gas densities (n(H-2) >10(4) cm(-3) ). This is very different from the cool, self-gravitating structures of giant molecular clouds normally found in the disks of galaxies. The Eye of the Medusa is found at an interface between a large-scale minor axis inflow and the central region of the Medusa. Hence, the extreme conditions inside the Eye may be the result of the radiative and mechanical feedback from a deeply embedded, young and massive super star cluster formed due to the gas pile-up at the intersection. Alternatively, shocks from the inflowing gas entering the central region of the Medusa may be strong enough to shock and fragment the gas. For both scenarios, however, it appears that the HCN and HCO+ dense gas tracers are not probing star formation, but instead a post-starburst and/or shocked ISM that is too hot and fragmented to form new stars. Thus, caution is advised in taking the detection of emission from dense gas tracers as evidence of ongoing or imminent star formation.

Place, publisher, year, edition, pages
2018. Vol. 615, article id A122
Keywords [en]
galaxies: evolution, galaxies: individual: NGC 4194, galaxies: starburst, galaxies: active, radio lines: ISM, ISM: molecules
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-159049DOI: 10.1051/0004-6361/201732436ISI: 000439937800002OAI: oai:DiVA.org:su-159049DiVA, id: diva2:1244691
Available from: 2018-09-03 Created: 2018-09-03 Last updated: 2018-09-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Adamo, Angela
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf