Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Improving Artist Content Matching with Stacking: A comparison of meta-level learners for stacked generalization
KTH, School of Electrical Engineering and Computer Science (EECS).
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Using automatic methods to assign incoming tracks and albums from multiple sources to artists entities in a digital rights management company, where no universal artist identifier is available and artist names can be ambiguous, is a challenging problem. In this work we propose to use stacked generalization to combine the predictions of heterogeneous classifiers for an improved quality of artist content matching on two datasets from a digital rights management company. We compare the performance of using a nonlinear meta-level learner to a linear meta-level learner for the stacked generalization on the two datasets, as well as on eight additional datasets to see how well our results general-

ize. We conduct experiments and evaluate how the different

meta-level learners perform, using the base learners’ class

probabilities or a combination of the base learners’ class probabilities and original input features as meta-features.

Our results indicate that stacking with a non-linear meta-level learner can improve predictions on the artist chooser problem. Furthermore, our results indicate that when using a linear meta-level learner for stacked generalization, using the base learners’ class probabilities as metafeatures works best, while using a combination of the base learners’ class probabilities and the original input features as meta-features works best when using a non-linear metalevel learner. Among all the evaluated stacking approaches, stacking with a non-linear meta-level learner, using a combination of the base learners’ class probabilities and the original input features as meta-features, performs the best in our experiments over the ten evaluation datasets.

Abstract [sv]

Att använda automatiska metoder för att tilldela spår och album från olika källor till artister i en digital underhållningstjänst är problematiskt då det inte finns några universellt använda identifierare för artister och namn på artister kan vara tvetydiga. I det här verket föreslår vi en användning av staplad generalisering för att kombinera förutsägningar från heterogena klassificerare för förbättra artistmatchningen i två datamäng från en digital underhållningstjänst. Vi jämför prestandan mellan en linjär och en icke-linjär metainlärningsmetod för den staplade generaliseringen av de två datamängder, samt även åtta ytterligare datamäng för att se hur resultaten kan generaliseras. Vi utför experiment och utvärderar hur de olika metainlärningsmetoderna presterar genom att använda basinlärningsmetodens klassannolikheter eller en kombination av basinlärningsmetodens klassannolikheter och den ursprungliga representationen som metarepresentation.

Våra resultat indikerar att staplandet med en icke-linjär metainlärningsmetod kan förbättra förutsägningarna i problemet med att tilldela artister. Vidare indikerar våra resultat att när man använder en linjär metainlärningsmetod för en staplad generalisering är det bäst att använda basinlärningsmetodens klassannolikheter som metarepresentation, medan när man använder en icke-linjär metainlärningsmetod för en staplade generaliseringen är det bäst att använda en kombination av basinlärningsmetodens klassannolikheter och den ursprungliga representationen som metarepresentation. Av alla utvärderade sätt att stapla är staplandet med en icke-linjär metainlärningsmetod med en kombination av basinlärningsmetodens klassannolikheter och den ursprungliga representationen som metarepresentation den ansats som presterar bäst i våra experiment över de tio datamängderna.

Place, publisher, year, edition, pages
2018. , p. 55
Series
TRITA-EECS-EX ; 2018:273
Keywords [en]
machine learning; stacked generalization; combining classifiers; meta-learning; name disambiguation.
Keywords [sv]
maskininlärning; staplade generaliseringar; kombinerande klassificerare; metainlärning; namn disambiguering.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-232087OAI: oai:DiVA.org:kth-232087DiVA, id: diva2:1232171
External cooperation
Spotify
Subject / course
Computer Science
Educational program
Master of Science - Software Engineering of Distributed Systems
Supervisors
Examiners
Available from: 2018-07-10 Created: 2018-07-10 Last updated: 2018-07-10Bibliographically approved

Open Access in DiVA

fulltext(1493 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 1493 kBChecksum SHA-512
323cd7a1a7fc7a7453dac1d3d6dc6a999d94b7c7c2a526245e7cae3e9cadf80a1b0dd85155bf48fff3c12ac463d8fa4e343028a9e10a041be85dd090f386ffd7
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information EngineeringComputer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf