Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Specialization of an Existing Image Recognition Service Using a Neural Network
KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS).
2018 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

To help combat the environmental impacts caused by humans this project is about investigating one way to simplify the waste management process. The idea is to use image recognition to identify what material the recyclable object is made of. A large data set containing labeled images of trash, called Trashnet, was analyzed using Google Cloud Vision. Since this API is not written for material detection specifically, a feed forward neural network was created using Tensorflow and trained with the output from Google Cloud Vision. Thus, the network learned how different word combinations from Google Cloud Vision implicated one of five different materials; glass, plastic, paper, metal and combustible waste. The network checked for 518 unique words in the input and ran them through two hidden layers with a size of 1000 nodes each, before having a one hot output layer. This neural network received an accuracy of around 60%, which beat Google Cloud Vision’s meager accuracy of around 30%. An application, with which the user can take pictures of the object he or she would like to recycle, could be developed with an educational purpose to let its user know what material the waste is made of, and with this information be able to throw the waste in the right bin.

Abstract [sv]

För att hjälpa till att motverka människans negativa påverkan på miljön kommer detta projekt handla om att undersöka hur man kan göra det enklare att källsortera. Grundidén är att använda bildigenkänning för att identifiera vilket återvinningsbart material som objektet i bilden består av. Ett stort dataset med bilder indelade i olika återvinningsbara material, kallat Trashnet, analyserades med hjälp av Google Cloud Vision, vilket är ett API för bildigenkänning och inte specifikt igenkänning av material. Med hjälp av Tensorflow skapades ett neuralt nätverk som använder utdatan från Google Cloud Vision som indata, vilket i sin tur kan ge ett av fem olika material som utdata; glas, plast, papper, metall eller brännbart. Nätverket lärde sig hur olika ordkombinationer från Google Cloud Vision implikerade ett av de fem materialen. Nätverkets indata-lager består av de 518 unika orden som Google Cloud Vision sammanlagt gav som utdata efter att ha analyserade Trashnets dataset. Dessa ord körs igenom två dolda lager, vilka båda består av 1000 noder var, innan det sista lagret, som är ett ”one hot”-utdatalager. Detta nätverk fick en träffsäkerhet på cirka 60%, vilket slog Google Cloud Visions träffsäkerhet på cirka 30%. Detta skulle kunna användas i en applikation, där användaren tar en bild på det skräp som önskas återvinnas, som utvecklas i utbildningssyfte att lära användaren vilket material dennes återvinningsbara föremål är gjort av, och med denna information bättre kunna källsortera.

Place, publisher, year, edition, pages
2018. , p. 22
Series
TRITA-EECS-EX ; 2018:149
Keywords [en]
Neural networks, Machine learning, Tensorflow, Google Cloud Vision, Image recognition
Keywords [sv]
Neurala nätverk, Maskininlärning, Tensorflow, Google Cloud Vision, Bildigenkänning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-232072OAI: oai:DiVA.org:kth-232072DiVA, id: diva2:1232102
Subject / course
Information and Communication Technology
Educational program
Master of Science in Engineering - Information and Communication Technology
Supervisors
Examiners
Available from: 2018-07-10 Created: 2018-07-10 Last updated: 2018-07-10Bibliographically approved

Open Access in DiVA

fulltext(5542 kB)40 downloads
File information
File name FULLTEXT01.pdfFile size 5542 kBChecksum SHA-512
c808628f590a5fc43882d9960787c1d46cbe7790d0f2233156534619e2226a72e06f945713393b644d22e376fb1ef548753ede5c482b5b8bf62031596d7e082f
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 40 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 106 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf