Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Topology Optimization of Turbine Manifold in the Rocket Engine Demonstrator Prometheus
Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Space Technology.
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The advantages of Topology Optimization (TO) are realized to a large extent due to the manufacturing freedom that Additive Manufacturing (AM) offer, compared to more conventional manufacturing methods. AM has the advantage of manufacturing shallow and complex structures previously not possible, and consequently opens up a whole new design spectrum. This thesis investigates the possibilities of using Topology Optimization as a tool to find stronger and lighter designs for the inlet turbine manifold in the rocket engine demonstrator Prometheus. The manifold is optimized by giving it more mass, subjecting it to load cases and pushing the topology optimization to make the manifold meet the weight requirement without exceeding the yield strength. Result validation indicates that the pressure and thermal loadings are the most prominent. The current topology optimization tools in ANSYS do not support optimization due to thermal features and thus optimization in the presented work has only been able to consider static structural loads. Nevertheless, it is possible to optimize the manifold due to static structural loads and achieve a manifold which satisfies the weight requirement. However, optimization tools due to thermal loading would be a desirable feature in the future.

Place, publisher, year, edition, pages
2018.
Keywords [en]
Additive Manufacturing, Prometheus, Rocket Engine, Topology Optimization
National Category
Aerospace Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-69981OAI: oai:DiVA.org:ltu-69981DiVA, id: diva2:1228857
External cooperation
GKN Aerospace
Subject / course
Student thesis, at least 30 credits
Educational program
Space Engineering, master's level
Supervisors
Examiners
Available from: 2018-06-29 Created: 2018-06-28 Last updated: 2018-06-29Bibliographically approved

Open Access in DiVA

fulltext(10117 kB)31 downloads
File information
File name FULLTEXT01.pdfFile size 10117 kBChecksum SHA-512
7a51e4f48af4ca4555674c1acebd18076432305e980d09b4259f18ade4912039e6a0fbeabe2a5e304b610bb497622fc5a631889bd9235d7c75195f9328670879
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Jensen, Filip
By organisation
Space Technology
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 31 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf