Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deep Text Mining of Instagram Data Without Strong Supervision
KTH, School of Electrical Engineering and Computer Science (EECS), Software and Computer systems, SCS.
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Textutvinning från Instagram utan Precis Övervakning (Swedish)
Abstract [en]

With the advent of social media, our online feeds increasingly consist of short, informal, and unstructured text. This data can be analyzed for the purpose of improving user recommendations and detecting trends. The grand volume of unstructured text that is available makes the intersection of text processing and machine learning a promising avenue of research. Current methods that use machine learning for text processing are in many cases dependent on annotated training data. However, considering the heterogeneity and variability of social media, obtaining strong supervision for social media data is in practice both difficult and expensive. In light of this limitation, a belief that has put its marks on this thesis is that the study of text mining methods that can be applied without strong supervision is of a higher practical interest.

This thesis investigates unsupervised methods for scalable processing of text from social media. Particularly, the thesis targets a classification and extraction task in the fashion domain on the image-sharing platform Instagram. Instagram is one of the largest social media platforms, containing both text and images. Still, research on text processing in social media is to a large extent limited to Twitter data, and little attention has been paid to text mining of Instagram data. The aim of this thesis is to broaden the scope of state-of-the-art methods for information extraction and text classification to the unsupervised setting, working with informal text on Instagram. Its main contributions are (1) an empirical study of text from Instagram; (2) an evaluation of word embeddings for Instagram text; (3) a distributed implementation of the FastText algorithm; (4) a system for fashion attribute extraction in Instagram using word embeddings; and (5) a multi-label clothing classifier for Instagram text, built with deep learning techniques and minimal supervision.

The empirical study demonstrates that the text distribution on Instagram exhibits the long-tail phenomenon, that the text is just as noisy as have been reported in studies on Twitter text, and that comment sections are multi-lingual. In experiments with word embeddings for Instagram, the importance of hyperparameter tuning is manifested and a mismatch between pre-trained embeddings and social media is observed. Furthermore, that word embeddings are a useful asset for information extraction is confirmed. Experimental results show that word embeddings beats a baseline that uses Levenshtein distance on the task of extracting fashion attributes from Instagram. The results also show that the distributed implementation of FastText reduces the time it takes to train word embeddings with a factor that scales with the number of machines used for training. Finally, our research demonstrates that weak supervision can be used to train a deep classifier, achieving an F1 score of 0.61 on the task of classifying clothes in Instagram posts based only on the associated text, which is on par with human performance.

Abstract [sv]

I och med uppkomsten av sociala medier så består våra online-flöden till stor del av korta och informella textmeddelanden, denna data kan analyseras med syftet att upptäcka trender och ge användarrekommendationer. Med tanke på den stora volymen av ostrukturerad text som finns tillgänglig så är kombinationen av språkteknologi och maskinlärning ett forskningsområde med stor potential. Nuvarande maskinlärningsteknologier för textbearbetning är i många fall beroende av annoterad data för träning. I praktiken så är det dock både komplicerat och dyrt att anskaffa annoterad data av hög kvalitet, inte minst vad gäller data från sociala medier, med tanke på hur pass föränderlig och heterogen sociala medier är som datakälla. En övertygelse som genomsyrar denna avhandling är att textutvinnings metoder som inte kräver precis övervakning har större potential i praktiken.

Denna avhandling undersöker oövervakade metoder för skalbar bearbetning av text från sociala medier. Specifikt så täcker avhandlingen ett komplext klassifikations- och extraktions- problem inom modebranschen på bilddelningsplattformen Instagram. Instagram hör till de mest populära sociala plattformarna och innehåller både bilder och text. Trots det så är forskning inom textutvinning från sociala medier till stor del begränsad till data från Twitter och inte mycket uppmärksamhet har givits de stora möjligheterna med textutvinning från Instagram. Ändamålet med avhandlingen är att förbättra nuvarande metoder som används inom textklassificering och informationsextraktion, samt göra dem applicerbara för oövervakad maskinlärning på informell text från Instagram. De primära forskningsbidragen i denna avhandling är (1) en empirisk studie av text från Instagram; (2) en utvärdering av ord-vektorer för användning med text från Instagram; (3) en distribuerad implementation av FastText algoritmen; (4) ett system för extraktion av kläddetaljer från Instagram som använder ord-vektorer; och (5) en flerkategorisk kläd-klassificerare för text från Instagram, utvecklad med djupinlärning och minimal övervakning.

Den empiriska studien visar att textdistributionen på Instagram har en lång svans, att texten är lika informell som tidigare rapporterats från studier på Twitter, samt att kommentarssektionerna är flerspråkiga. Experiment med ord-vektorer för Instagram understryker vikten av att justera parametrar före träningsprocessen, istället för att använda förbestämda värden. Dessutom visas att ord-vektorer tränade på formell text är missanpassade för applikationer som bearbetar informell text. Vidare så påvisas att ord-vektorer är effektivt för informationsextraktion i sociala medier, överlägsen ett standardvärde framtaget med informationsextraktion baserat på syntaktiskt ordlikhet. Resultaten visar även att den distribuerade implementationen av FastText kan minska tiden det tar att träna ord-vektorer med en faktor som beror på antalet maskiner som används i träningen. Slutligen, vår forskning indikerar att svag övervakning kan användas för att träna en klassificerare med djupinlärning. Den tränade klassificeraren uppnår ett F1 resultat av 0.61 på uppgiften att klassificera kläddetaljer av bilder från Instagram, baserat endast på bildtexten och tillhörande användarkommentarer, vilket är i nivå med mänsklig förmåga.

Place, publisher, year, edition, pages
2018. , p. 90
Series
TRITA-EECS-EX ; 2018:138
Keywords [en]
Natural Language Processing, Information Extraction, Machine Learning
Keywords [sv]
Språkteknologi, Informationsextraktion, Maskinlärning
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:kth:diva-231162OAI: oai:DiVA.org:kth-231162DiVA, id: diva2:1222945
Educational program
Master of Science - Distributed Computing
Presentation
2018-06-01, Ada, SCS department, Electrum, Kistagången 15, Stockholm, Kista, 14:01 (English)
Supervisors
Examiners
Available from: 2018-08-06 Created: 2018-06-24 Last updated: 2018-08-06Bibliographically approved

Open Access in DiVA

KimHammar_Thesis_Final_2018_8_June.pdf(3778 kB)27 downloads
File information
File name FULLTEXT01.pdfFile size 3778 kBChecksum SHA-512
15544186e2dfdb32bcbfd7871357ddbc9895d54e366d5e745d98c8bb02e3c1df771e0a1ea1091a204171eb385a5bfd61cbf450f121adfc7dd447353557fd5df1
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Hammar, Kim
By organisation
Software and Computer systems, SCS
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 27 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 213 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf