Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multimodal Transduction in Upper-secondary School Physics
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. University of the Western Cape, Cape Town, South Africa. (Physics Education Research)ORCID iD: 0000-0002-9866-9065
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics. Department of Mathematics and Science Education, Stockholm /University, Sweden.ORCID iD: 0000-0003-3244-2586
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.ORCID iD: 0000-0002-9185-628X
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Physics Didactics.
2018 (English)Conference paper, Oral presentation with published abstract (Other academic)
Abstract [en]

In this study we video-filmed upper-secondary physics students working with a laboratory task designed to encourage transduction (Bezemer & Kress 2008) when learning about coordinate systems.

 

Students worked in pairs with an electronic measurement device to determine the direction of the Earth’s magnetic field. The device, IOLab, can be held in the hand and moved around. The results of this movement are graphically displayed on a computer screen as changes in the x, y and z components of the Earth’s magnetic field. The students were simply instructed to use the IOLab to find the direction of the Earth’s magnetic field and mark its direction using a red paper arrow.

 

A full multimodal transcription of the student interaction was made (Baldry & Thibault 2006). In our analysis of this transcription, three separate transductions of meaning were identified—transduction of meaning potential in the room to the computer screen, transduction of this meaning to the red arrow, and finally transduction into student gestures. We suggest that this final transduction could not have been made without the introduction of the arrow, which functioned as a coordinating hub (Fredlund et al 2012).

 

We recommend that teachers should carefully think about the resources in a task that may function as a coordinating hub and should also look for student transductions in their classrooms as confirmation that learning is taking place.

 

References

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.

Airey, J. (2009). Science, language, and literacy: Case studies of learning in Swedish university physics (Doctoral dissertation, Acta Universitatis Upsaliensis). http://publications.uu.se/theses/abstract.xsql?dbid=9547 

Airey, J. (2015). Social Semiotics in Higher Education: Examples from teaching and learning in undergraduate physics In: SACF Singapore-Sweden Excellence Seminars, (STINT) , 2015 (pp. 103). urn:nbn:se:uu:diva-266049.

Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of           modes. Journal of Research in Science Teaching, 46(1), 27-49.

Airey, J. & Linder, C. (2015) Social Semiotics in Physics Education: Leveraging critical constellations of disciplinary representations ESERA          2015 From http://urn.kb.se/resolve?urn=urn%3Anbn%3Ase%3Auu%3Adiva-260209

Airey, J., & Linder, C. (2017). Social Semiotics in University Physics Education. In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education (pp. 95-122). Cham, Switzerland: Springer.

Baldry, A., & Thibault, P. J. (2006). Multimodal Transcription and Text Analysis. London: Equinox Publishing.

Bezemer, J., & Kress, G. (2008). Writing in multimodal texts: a social semiotic account of designs for learning. Written Communication, 25(2),           166-195.

Fredlund, T., Airey, J., & Linder, C. (2012). Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. European Journal of Physics, 33, 657-666.

Kress, G. (2010). Multimodality: A social semiotic approach to contemporary communication. London: Routledge.

Lemke, J. L. (1998). Teaching all the languages of science: Words, symbols, images, and actions. In Conference on Science Education in Barcelona.

Selen, M. (2013). Pedagogy meets Technology: Optimizing Labs in Large Enrollment Introductory Courses. Bulletin of the American Physical      Society58. http://meetings.aps.org/Meeting/APR13/Session/C7.3

Volkwyn, T., Airey, J., Gregorčič, B., & Heijkenskjöld, F. (2016). Multimodal transduction in secondary school physics 8th International Conference on Multimodality, 7th-9th December 2016. Cape Town, South Africa. Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-316982.

Volkwyn, T., Airey, J., Gregorčič, B., Heijkenskjöld, F., & Linder, C. (2018). Physics students learning about abstract mathematical tools when engaging with “invisible” phenomena. PERC proceedings 2018 https://www.compadre.org/per/perc/proceedings.cfm.

Volkwyn, T., Airey, J., Gregorčič, B., & Heijkenskjöld, F. (submitted). Learning Science through Transduction: Multimodal disciplinary meaning-making in the physics laboratory. Designs for Learning.

Wu, H-K, & Puntambekar, S. (2012). Pedagogical Affordances of Multiple External Representations in Scientific Processes. Journal of Science Education and Technology, 21(6), 754-767.

Place, publisher, year, edition, pages
2018.
Keywords [en]
disciplinary affordance, pedagogical affordance, magnetic field, meaning potential, semiotic resource, multimodal, transduction, coordinating hub
National Category
Other Physics Topics Didactics
Research subject
Physics with specialization in Physics Education
Identifiers
URN: urn:nbn:se:uu:diva-354706OAI: oai:DiVA.org:uu-354706DiVA, id: diva2:1222378
Conference
International Science Education Conference (ISEC) 2018. 21 June 2018 National Institute of Education, Singapore
Funder
Swedish Research Council, 2016-04113Available from: 2018-06-21 Created: 2018-06-21 Last updated: 2018-06-28Bibliographically approved

Open Access in DiVA

Volkwyn et al _2018_ISEC_Singapore(2658 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 2658 kBChecksum SHA-512
17b80e4131e1084c20145568e811f090b83a26685174278ee8914a9d4f4112e1c2b21e1ade40ab330095cf77ea503ff9f3a060fc179e0a46fe5a89c027987de9
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Volkwyn, TrevorAirey, JohnGregorcic, BorHeijkenskjöld, Filip
By organisation
Physics Didactics
Other Physics TopicsDidactics

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf