Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Soil-Structure Interaction for foundations on High-Speed Railway Bridges
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0002-7927-7402
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0002-8926-2140
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0002-2908-4848
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-2104-382X
2017 (English)Report (Other academic)
Abstract [en]

This report contains a parametric study on the dynamic response of railway bridges on flexible supports. The results are based on simulations using 2D and 3D models. The dynamic stiffness of the supports is described by separate models of the foundation, including relevant stress and strain dependent soil properties from permanent loading that is linearized in a subsequent dynamic analysis. The complex-valued dynamic stiffness constitutes the boundary conditions in a separate analysis of the bridge superstructure that is solved in frequency domain.

Two different foundation types are studied; shallow slab foundation with relatively good ground conditions, and pile group foundations with relatively poor ground conditions. In both cases, the foundation slab and the pile group have fixed geometry. In the parametric study, the corresponding vertical static foundation stiffness range from 2 – 20 GN/m for the slab foundation and 5 – 25 GN/m for the pile group foundation.

For the slab foundations, both the stiffness and damping highly depends on the properties of the soil, foundation depth and geometry of the foundation slab. For the pile group foundations, the stiffness is mainly governed by the pile group and the damping by the soil.

Based on the simulations, the additional damping from the slab foundation is in most cases negligible. Only for relatively soft foundations and short-span bridges significant additional damping is seen. For the pile group foundations, the additional damping is in some cases significant, especially for deeper foundations and short-span bridges. Considering a lower bound of the parametric study does however result in a negligible contribution.

The dynamic response from passing trains show that the assumption of fixed supports in most cases is conservative. However, the flexible supports may result in a lower natural frequency that should be accounted for in order to not underestimate the resonance speed of the train.

If flexible supports are included in a dynamic analysis, both the stiffness and damping component needs to be included. The frequency-domain approach presented in this report is a viable solution technique but is not implemented in most commercial software used in the industry.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. , p. 65
Series
TRITA-BKN, ISSN 1103-4289 ; 166
Keywords [en]
Dynamic soil-structure interaction; impedance; foundation stiffness; railway bridge; high-speed trains
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-230757OAI: oai:DiVA.org:kth-230757DiVA, id: diva2:1219179
Funder
Swedish Transport Administration, TRV 2016/56775
Note

QC 20180618

Available from: 2018-06-15 Created: 2018-06-15 Last updated: 2018-06-18Bibliographically approved

Open Access in DiVA

fulltext(7889 kB)55 downloads
File information
File name FULLTEXT01.pdfFile size 7889 kBChecksum SHA-512
33c162bcab6434ce04154331b3a2ac14cc732eba86223da28e4f24f04d84ec78d193748675bdc290e8cb42eb5b88ea80f91d93c500150450edf63981180d68ab
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Lind Östlund, JohanAndersson, AndreasMahir, Ülker-KaustellBattini, Jean-Marc
By organisation
Structural Engineering and Bridges
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 55 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 280 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf