Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigation of DNA Base Excision Repair in MTH1 Depleted T-cell Acute Lymphoblastic Leukemia cells
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Genomic alterations may initiate cancer development as the consequence of endogenous or exogenous DNA damaging factors. Defects in DNA repair mechanisms may also facilitate cancer progression as well as accumulation of mutations which favor cancer cell survival. However, DNA repair pathways in cancer cells can be considered as their Achilles heel which are possible targets in order to compromise their survival. For instance, it has been demonstrated recently that inhibition of a protein called MTH1 via RNA interference (RNAi) or chemical inhibitors can stop tumor growth and triggers cell death by increasing the load of oxidative DNA damage. MTH1 is a hydrolase which converts 8-oxo-dGTP into 8-oxo-dGMP in order to prevent incorporation of oxidatively damaged nucleotides into DNA. In addition, DNA glycosylases which recognize and remove mismatched or damaged nucleotide pairs in DNA can also participate in repair of 8-oxo-dG, such as MUTYH repairing A:8-oxo-dG pair. The goal of the current study was to investigate the importance of MUTYH activity upon MTH1 depletion. The current study tried to answer whether simultaneous knock-down of MTH1 and MUTYH sensitizes cancer cells to oxidative stress and increases cell death. Both enzymes were simultaneously depleted in T cell acute lymphoblastic leukemia cells using RNAi. Then, we analyzed the efficiency of gene and protein knock-down by quantitative real-time-PCR and western blotting, respectively. Induction of cell death was also assessed by flow cytometric analysis of cell cycle. Afterwards, the effect of the treatments on DNA repair pathways was studied by analysis of gene expression of several DNA glycosylases and DNA polymerases using qRT-PCR. The results showed that concurrent depletion of both enzymes led to synergistic induction of cell death. Down-regulation of NEIL1 DNA glycosylase as well as POLQ and POLH DNA polymerases mRNAs adapted their DNA repair pathways to cope with induced damages under these conditions. Finally, the results of this study suggest that dual suppression of MTH1 and MUTYH may provide a new approach to reduce survival of T cell ALL.

Place, publisher, year, edition, pages
2018. , p. 23
Keywords [en]
Oxidative stresses, DNA repair, 8-oxo-dG, T cell ALL, MTH1, MUTYH.
National Category
Other Medical Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-230172OAI: oai:DiVA.org:kth-230172DiVA, id: diva2:1216733
Available from: 2018-06-21 Created: 2018-06-12 Last updated: 2018-06-21Bibliographically approved

Open Access in DiVA

fulltext(1897 kB)7 downloads
File information
File name FULLTEXT01.pdfFile size 1897 kBChecksum SHA-512
66c2c5016cdef346d626fbab11e6e6b2283dcfc90e3308447eddae89f73be09d315b44921efdec50b5ff65bd74f45ea6aea65e8837a6aa87f8094787b5aac079
Type fulltextMimetype application/pdf

By organisation
School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH)
Other Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 7 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf