CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt163",{id:"formSmash:upper:j_idt163",widgetVar:"widget_formSmash_upper_j_idt163",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt164_j_idt166",{id:"formSmash:upper:j_idt164:j_idt166",widgetVar:"widget_formSmash_upper_j_idt164_j_idt166",target:"formSmash:upper:j_idt164:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Uniform semiclassical trace formula for *U*(3) → *SO*(3) symmetry breakingPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2005 (English)In: Journal of Physics A: Mathematical and General, ISSN 0305-4470, E-ISSN 1361-6447, Vol. 38, no 46, p. 9941-9967Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Institute of Physics (IOP), 2005. Vol. 38, no 46, p. 9941-9967
##### National Category

Other Physics Topics
##### Identifiers

URN: urn:nbn:se:oru:diva-65578DOI: 10.1088/0305-4470/38/46/004ISI: 000233696200007Scopus ID: 2-s2.0-27844470155OAI: oai:DiVA.org:oru-65578DiVA, id: diva2:1188780
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt484",{id:"formSmash:j_idt484",widgetVar:"widget_formSmash_j_idt484",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt490",{id:"formSmash:j_idt490",widgetVar:"widget_formSmash_j_idt490",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt496",{id:"formSmash:j_idt496",widgetVar:"widget_formSmash_j_idt496",multiple:true}); Available from: 2018-03-08 Created: 2018-03-08 Last updated: 2018-03-12Bibliographically approved

We develop a uniform semiclassical trace formula for the density of states of a three-dimensional isotropic harmonic oscillator (HO), perturbed by a term . This term breaks the U(3) symmetry of the HO, resulting in a spherical system with SO(3) symmetry. We first treat the anharmonic term for small ε in semiclassical perturbation theory by integration of the action of the perturbed periodic HO orbit families over the manifold which is covered by the parameters describing their four-fold degeneracy. Then, we obtain an analytical uniform trace formula for arbitrary ε which in the limit of strong perturbations (or high energy) asymptotically goes over into the correct trace formula of the full anharmonic system with SO(3) symmetry, and in the limit ε (or energy) →0 restores the HO trace formula with U(3) symmetry. We demonstrate that the gross-shell structure of this anharmonically perturbed system is dominated by the two-fold degenerate diameter and circular orbits, and not by the orbits with the largest classical degeneracy, which are the three-fold degenerate tori with rational ratios ω_{r}:ω_{φ} ≤ N:M of radial and angular frequencies. The same holds also for the limit of a purely quartic spherical potential V(r) ∝ r^{4}.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1227",{id:"formSmash:j_idt1227",widgetVar:"widget_formSmash_j_idt1227",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1292",{id:"formSmash:lower:j_idt1292",widgetVar:"widget_formSmash_lower_j_idt1292",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1293_j_idt1296",{id:"formSmash:lower:j_idt1293:j_idt1296",widgetVar:"widget_formSmash_lower_j_idt1293_j_idt1296",target:"formSmash:lower:j_idt1293:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});