Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Proof of Concept of Closed Loop Re-Simulation (CLR) Methods in Verification of Autonomous Vehicles
KTH, School of Electrical Engineering (EES), Automatic Control.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This degree project, conducted at Volvo Cars, investigates whether closed-loopre-simulation (CLR) methods can provide a safety proof for the autonomousdriving (AD) functions based on previously collected driving data. The elementsunder study for this closed loop approach are model-in-loop based SimulationPlatform Active Safety (SPAS) environment and Active Safety (AS)software.The prerequisites for securing the closed loop re-simulation environment areperforming open-loop simulations with AS software under test and preparing avalidated vehicle model constituting the sensors and actuators. The validatedvehicle model against a set of physical data ensures high confidence in the CAEenvironment. This results in high correlation between physical and simulateddata for the closed loop tests performed for testing the Active Safety algorithms.This thesis work focuses on preparing the vehicle model in SPAS with the emphasison performance of auto-brake functionality in CLR. The vehicle modelin SPAS was prepared by tuning the brake model focusing on the EuNCAPcases in which CLR environment was subsequently tested with respect to Eu-NCAP scenarios.In the procedure of securing CLR methods, it was crucial to design the scenariosin virtual test environment as close as possible to field test conditions tomake reliable comparison with the reality. Therefore, the verification of CLRenvironment was carried out by subjecting the CAE Environment to EuNCAPbraking scenarios with dry surfaces, host vehicle velocities up to 80 km/h andtarget vehicle deceleration levels being 2m/s2 and 6m/s2.As a result of all these virtual tests, it was empirically verified that CLR environmentcan be used to predict braking behaviour of the vehicle in certaintraffic scenarios for the verification of autonomous driving functions.

Abstract [sv]

I detta examensarbete, som utförs på Volvo Cars, undersöks hurvida ett closedloopre-simuleringsverktyg kan användas för att bevisa att en självkörande(AD) funktionalitet är säker baserat på tidigare insamlad kördata. Dennastudie involverar användandet av ett Model-in-the-loop baserat simuleringsverktygkallat Simulation Platform for Active Safety (SPAS) och en mjukvara förAktiv Säkerhet (AS).Förutsättningarna för att säkra en closed-loop re-simuleringsmiljö är att mjukvaransexekvering och fordonsmodellen i simuleringsmiljön valideras genomopen-loop tester. Den valididerade fordonsmodellen jämförs med data frånfysiska prover för att säkra hög konfidens i simuleringarna.Detta examensarbete fokuserar på att förbereda fordonsmodellen i SPAS medtryck på prestandan av auto-broms systemet. Fordonsmodellen i SPAS beredesgenom att ställa in bromsmodellen med fokus på EuNCAP lastfall där CLRmiljön skulle tillämpas. I processen att säkra CLR metoden var det viktigt attdesigna testfall i den virtuella miljön som så bra som möjligt matcha fältprovsfall för att kunna göra en trovärdig jämförelse, därav användes EuNCAP bromstestfall vid torrt underlag, ego hastighet upp mot 80km/h och målbilshasdeccelerationmellan 2 m/s2 och 6 m/s2Som ett resultat av dessa virtuella test har det empiriskt verifierat att CLRmetoden kan användas för att förutspå broms prestanda av fordonet i specifikatrafikscenarion för självkörande funktionalitet.

Place, publisher, year, edition, pages
2017. , p. 38
Series
TRITA-EE, ISSN 1653-5146 ; 2017:071
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-223978OAI: oai:DiVA.org:kth-223978DiVA, id: diva2:1188687
External cooperation
Volvo Car Group
Educational program
Master of Science - Systems, Control and Robotics
Examiners
Available from: 2018-03-08 Created: 2018-03-08 Last updated: 2018-03-08Bibliographically approved

Open Access in DiVA

fulltext(5933 kB)38 downloads
File information
File name FULLTEXT01.pdfFile size 5933 kBChecksum SHA-512
51aae20cc25c045a74b1187677a3ec7d0c0620a0274b24856efe5f32b9b7b9488d984d086286ab4c2f05810919dc86308e6a7fdb11c17eed1320d6d7d41f928e
Type fulltextMimetype application/pdf

By organisation
Automatic Control
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 38 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 206 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf