Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A clip-on electroosmotic pump for oscillating flow in microfluidic cell culture devices
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. LunaMicro AB, Linköping, Sweden.
Linköping University, Department of Physics, Chemistry and Biology, Biotechnology. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biotechnology. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering. LunaMicro AB, Linköping, Sweden.ORCID iD: 0000-0002-2773-5096
2018 (English)In: Microfluidics and Nanofluidics, ISSN 1613-4982, E-ISSN 1613-4990, Vol. 22, no 3, article id 27Article in journal (Refereed) Published
Abstract [en]

Recent advances in microfluidic devices put a high demand on small, robust and reliable pumps suitable for high-throughput applications. Here we demonstrate a compact, low-cost, directly attachable (clip-on) electroosmotic pump that couples with standard Luer connectors on a microfluidic device. The pump is easy to make and consists of a porous polycarbonate membrane and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes. The soft electrode and membrane materials make it possible to incorporate the pump into a standard syringe filter holder, which in turn can be attached to commercial chips. The pump is less than half the size of the microscope slide used for many commercial lab-on-a-chip devices, meaning that these pumps can be used to control fluid flow in individual reactors in highly parallelized chemistry and biology experiments. Flow rates at various electric current and device dimensions are reported. We demonstrate the feasibility and safety of the pump for biological experiments by exposing endothelial cells to oscillating shear stress (up to 5 dyn/cm2) and by controlling the movement of both micro- and macroparticles, generating steady or oscillatory flow rates up to ± 400 μL/min.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2018. Vol. 22, no 3, article id 27
National Category
Other Medical Biotechnology
Identifiers
URN: urn:nbn:se:liu:diva-145301DOI: 10.1007/s10404-018-2046-4ISI: 000427527600005OAI: oai:DiVA.org:liu-145301DiVA, id: diva2:1184492
Note

Funding agencies: Swedish Research Council (Vetenskapsradet) [2015-03298]

Available from: 2018-02-21 Created: 2018-02-21 Last updated: 2018-04-12Bibliographically approved
In thesis
1. Organs-on-chips for the pharmaceutical development process: design perspectives and implementations
Open this publication in new window or tab >>Organs-on-chips for the pharmaceutical development process: design perspectives and implementations
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Organs-on-chips are dynamic cell culture devices created with the intention to mimic organ function in vitro. Their purpose is to assess the toxicity and efficacy of drugs and, as early as possible in the pharmaceutical development process, predict the outcome of clinical trials. The aim of this thesis is to explain and discuss these cell culture devices from a design perspective and to experimentally exemplify some of the specific functions that characterize organs-on-chips.

The cells in our body reside in complex environments with chemical and mechanical cues that affect their function and purpose. Such a complex environment is difficult to recreate in the laboratory and has therefore been overlooked in favor of more simple models, i.e. static twodimensional (2D) cell cultures. Numerous recent reports have shown cell culture systems that can resemble the cell’s natural habitat and enhance cell functionality and thereby potentially provide results that better reflects animal and human trials. The way these organs-on-chips improve in vitro cell culture assays is to include e.g. a three-dimensional cell architecture (3D), mechanical stimuli, gradients of oxygen or nutrients, or by combining several relevant cell types that affect each other in close proximity.

The research conducted for this thesis shows how cells in 3D spheroids or in 3D hydrogels can be cultured in perfused microbioreactors. Furthermore, a pump based on electroosmosis, and a method for an objective conceptual design process, is introduced to the field of organs-on-chips.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 78
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1907
Keywords
Organs-on-chips, cell culture models, pharmaceutical development, microfluidics
National Category
Cell and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-145300 (URN)10.3384/diss.diva-145300 (DOI)9789176853597 (ISBN)
Public defence
2018-03-23, Planck, Fysikhuset, Campus Valla, Linköping, 13:30 (English)
Opponent
Supervisors
Note

I den tryckta versionen är det ena serienamnet felaktigt. I den elektroniska versionen är detta ändrat till korrekt "Linköping Studies in Science and Technology. Dissertations"

Available from: 2018-02-21 Created: 2018-02-21 Last updated: 2018-04-24Bibliographically approved

Open Access in DiVA

fulltext(1089 kB)49 downloads
File information
File name FULLTEXT01.pdfFile size 1089 kBChecksum SHA-512
96eef0e17764e774fb3566ffde5c6935c42d64aa2cf051fe9f33aa168dbbd0876f1ec15ad668636e00a4bf6a6378eeb9f285402232a27bc0a8b911c9a4a8bd2e
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Bengtsson, KatarinaChristoffersson, JonasMandenius, Carl-FredrikRobinson, Nathaniel D
By organisation
Surface Physics and ChemistryFaculty of Science & EngineeringBiotechnology
In the same journal
Microfluidics and Nanofluidics
Other Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 49 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf