Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cyclic versus Noncyclic Chelating Scaffold for Zr-89-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression
Med Univ Innsbruck, Dept Nucl Med, Anichstr 35, A-6020 Innsbruck, Austria..
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
Show others and affiliations
2018 (English)In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 15, no 1, p. 175-185Article in journal (Refereed) Published
Abstract [en]

Zirconium-89 is an emerging radionuclide for positron emission tomography (PET) especially for biomolecules with slow e pharmacokinetics as due to its longer half-life, in comparison to fluorine 18 and gallium-68, imaging at late time points is feasible. Desferrioxamine B (DFO), a linear bifunctional chelator (BFC) is mostly used for this radionuclide so far but shows limitations regarding stability. Our group recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study was designed to compare FSC and DFO head-to head as bifunctional chelators for "Zr-radiolabeled EGFR-targeting ZEGFR:2377 affibody bioconjugates. FSC-ZEGFR:2377 and DFOZEGFR:2377 were evaluated regarding radiolabeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution, and microPET-CT imaging. Both conjugates were efficiently labeled with zirconium-89 at room temperature but radiochemical yields increased substantially at elevated temperature, 85 degrees C. Both 89Zr-FSC-ZEGFR:2377 and Zr-89-DFO-ZEGFR:2377 revealed remarkable specificity, affinity and slow cell-line dependent internalization. Radiolabeling at 85 degrees C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake. In comparison 89ZrDFO-ZEGFR:2377, radiolabeled at room temperature, showed a significant difference regarding tumor-to-organ ratios. MicroPET-CT imaging studies of Zr-89-FSC-ZEGFR:2377 as well as Zr-89-DFO-ZEGFR:2377 confirmed these findings. In summary we were able to show that FSC is a suitable alternative to DFO for radiolabeling of biomolecules with zirconium-89. Furthermore, our findings indicate that Zr-89-radiolabeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2018. Vol. 15, no 1, p. 175-185
Keyword [en]
FSC, DFO, zirconium-89, EGFR, affibody, PET
National Category
Pharmaceutical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-341305DOI: 10.1021/acs.molpharmaceut.7b00787ISI: 000419419800017PubMedID: 29160082OAI: oai:DiVA.org:uu-341305DiVA: diva2:1180939
Funder
Swedish Cancer Society, CAN 2014/474, CAN2015/350Swedish Research Council, VR 2015-02509, VR 2015-02353Knut and Alice Wallenberg Foundation
Available from: 2018-02-07 Created: 2018-02-07 Last updated: 2018-02-07Bibliographically approved

Open Access in DiVA

fulltext(1932 kB)2 downloads
File information
File name FULLTEXT01.pdfFile size 1932 kBChecksum SHA-512
30fb8cfc446b0414b7c0c65b6023e2eea2501a9a4fef6909763463a47add13a4246258da1672dc8a9a19a1be2267a5ca65b909d861f0e54f1e3d02282e1ad3b8
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Garousi, JavadOroujeni, MaryamMitran, BogdanVorobyeva, AnzhelikaOrlova, AnnaTolmachev, Vladimir
By organisation
Medical Radiation ScienceDivision of Molecular Imaging
In the same journal
Molecular Pharmaceutics
Pharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf