Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Robust Localization of Research Concept Vehicle (RCV) in Large Scale Environment
KTH, School of Electrical Engineering and Computer Science (EECS).
2018 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Robust lokalisering av Research Concept Vehicle (RCV) i storskalig miljö (Swedish)
Abstract [en]

Autonomous vehicles in the recent era are robust vehicles that have the capability to drive themselves without human involvement using sensors and Simultaneous Localization and Mapping algorithms, which helps the vehicle gain an understanding of its environment while driving with the help of laser scanners (Velodyne), IMU and GPS to collect data and solidify the foundation for locating itself in an unknown environment. Various methods were studied and have been tested for increasing the efficiency of registration and optimization over the years but the implementation of the NDT library for mapping and localization have been found to be fast and more accurate as compared to conventional methods.

The objective of this thesis is to ascertain a robust method of pose estimation of the vehicle by combining data from the laser sensor, with the data from the IMU and GPS receiver on the vehicle. The initial estimate prediction of the position is achieved by generating a 3D map using the Normal Distribution Transform and estimating the position using the NDT localization algorithm and the GPS data collected by driving the vehicle in an external environment. The results presented explain and verify the hypothesis being stated and shows the comparison of the localization algorithm implemented with the GPS receiver data available on the vehicle while driving.

Abstract [sv]

Autonoma fordon har på senare tid utvecklats till robusta fordon som kan köra sig själva utan hjälp av en människa, detta har möjliggjorts genom användandet av sensorer och algoritmer som utför lokalisering och kartläggning samtidigt (SLAM). Dessa sensorer och algoritmer hjälper fordonet att förstå dess omgivning medan det kör och tillsammans med laser skanners (Velodyne), IMU'er och GPS läggs grunden för att kunna utföra lokalisering i en okänd miljö. Ett flertal metoder har studerats och testats för att förbättra effektiviteten av registrering och optimering under åren men implementationen av NDT biblioteket för kartläggning och lokalisering har visat sig att vara snabbt och mer exakt jämfört med konventionella metoder.

Målet med detta examensarbete är att hitta en robust metod för uppskatta pose genom att kombinera data från laser sensorn, en uppskattning av den ursprungliga positionen som fås genom att generera en 3D karta med hjälp av normalfördelningstransformen och GPS data insamlad från körningar i en extern miljö. Resultaten som presenteras beskriver och verifierar den hypotes som läggs fram och visar jämförelsen av den implementerade lokaliseringsalgoritmen med GPS data tillgänglig på fordonet under körning.

Place, publisher, year, edition, pages
2018.
Series
TRITA-EECS-EX ; 2018:26
Keywords [en]
Localization, Normal Distribution Transform, Pose Fusion, MCL, Monte-Carlo Localization, GPS, Robust Localization, SLAM
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-221846OAI: oai:DiVA.org:kth-221846DiVA, id: diva2:1178067
Supervisors
Examiners
Available from: 2018-02-02 Created: 2018-01-27 Last updated: 2018-02-02Bibliographically approved

Open Access in DiVA

fulltext(5430 kB)50 downloads
File information
File name FULLTEXT01.pdfFile size 5430 kBChecksum SHA-512
6bfee846ddfbf08ec341e0720f4d78218f6fa6a7955eda632158b6870ed651b9dc8d2ddfcc67d8eb11c374eedfee36ef80516ff1e8177c61d59106a0899f42f1
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 50 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf