Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Searchable Encrypted Relational Databases:Risks and Countermeasures
RISE - Research Institutes of Sweden, ICT, SICS.
RISE - Research Institutes of Sweden, ICT, SICS.ORCID iD: 0000-0002-6229-2809
Lunds university, Sweden.
2017 (English)In: Data Privacy Management, Cryptocurrencies and Blockchain Technology: ESORICS 2017 International Workshops, DPM 2017 and CBT 2017, Oslo, Norway, September 14-15, 2017, Proceedings / [ed] Joaquin Garcia-Alfaro et al., Gewerbestrasse 11, 6330 Cham, Switzerland: Springer Nature , 2017, Vol. 10436, p. 70-85Conference paper, Published paper (Refereed)
Abstract [en]

We point out the risks of protecting relational databases viaSearchable Symmetric Encryption (SSE) schemes by proposing an infer-ence attack exploiting the structural properties of relational databases.We show that record-injection attacks mounted on relational databaseshave worse consequences than their file-injection counterparts on un-structured databases. Moreover, we discuss some techniques to reducethe effectiveness of inference attacks exploiting the access pattern leak-age existing in SSE schemes. To the best of our knowledge, this is thefirst work that investigates the security of relational databases protectedby SSE schemes.

Place, publisher, year, edition, pages
Gewerbestrasse 11, 6330 Cham, Switzerland: Springer Nature , 2017. Vol. 10436, p. 70-85
Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 10436
Keywords [en]
Privacy. SSE Database. Inference Attacks.
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:ri:diva-33180DOI: 10.1007/978-3-319-67816-0ISBN: 978-3-319-67816-0 (electronic)OAI: oai:DiVA.org:ri-33180DiVA, id: diva2:1176658
Conference
ESORICS 2017 International Workshops: DPM 2017
Projects
PaaSword
Note

Publication venue: the 12th Data Privacy and Management (DPM) workshop co-located with ESORICS 2017

Available from: 2018-01-23 Created: 2018-01-23 Last updated: 2018-01-26Bibliographically approved

Open Access in DiVA

fulltext(684 kB)20 downloads
File information
File name FULLTEXT01.pdfFile size 684 kBChecksum SHA-512
f1e99ca4d511b2bd35f5a65f14a7bb277c3d92615a80cb55e1d2a9472270c203bb698418f0ff8a2ae3241b28df4fc1d94e42708680fa121e715993908b927f68
Type fulltextMimetype application/pdf

Other links

Publisher's full texthttps://link.springer.com/book/10.1007/978-3-319-67816-0

Search in DiVA

By author/editor
Andersson, Tobias
By organisation
SICS
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 20 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 162 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf