CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt184",{id:"formSmash:upper:j_idt184",widgetVar:"widget_formSmash_upper_j_idt184",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt186_j_idt188",{id:"formSmash:upper:j_idt186:j_idt188",widgetVar:"widget_formSmash_upper_j_idt186_j_idt188",target:"formSmash:upper:j_idt186:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Ramification numbers and periodic points in arithmetic dynamical systemsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)Licentiate thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Växjö: Linnaeus University Press, 2018. , p. 74
##### Series

Lnu Licentiate ; 10
##### Keywords [en]

ramification numbers, local fields, arithmetic dynamics, periodic points, Nottingham group
##### National Category

Mathematics
##### Research subject

Natural Science, Mathematics
##### Identifiers

URN: urn:nbn:se:lnu:diva-69926ISBN: 978-91-88761-28-6 (print)ISBN: 978-91-88761-29-3 (electronic)OAI: oai:DiVA.org:lnu-69926DiVA, id: diva2:1175046
##### Presentation

2018-02-15, D1136, Växjö, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt585",{id:"formSmash:j_idt585",widgetVar:"widget_formSmash_j_idt585",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt591",{id:"formSmash:j_idt591",widgetVar:"widget_formSmash_j_idt591",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt597",{id:"formSmash:j_idt597",widgetVar:"widget_formSmash_j_idt597",multiple:true}); Available from: 2018-01-17 Created: 2018-01-17 Last updated: 2018-01-17Bibliographically approved
##### List of papers

The field of discrete dynamical systems is a rich and active field of research within mathematics, with applications ranging from biology to computer science, finance, engineering and various others. In this thesis properties of certain discrete dynamical systems are studied together with number theoretic properties of the functions defining these systems. The dynamical systems studied in this thesis are defined by iteration of power series *g* with a fixed point at the origin, tangent to the identity, and defined over fields of prime characteristic *p*. We are interested in the geometric location of the periodic points in the open unit disk. Recent results have shown that there is a connection between the lower ramification numbers of *g* and the geometric location of the periodic points in the open unit disk. The lower ramification numbers of *g* can be described as the multiplicity of zero as a fixed point of *p*-power iterates of *g*.

Part of this thesis concerns characterizing power series having certain sequences of ramification numbers. The other part concerns utilizing these results in order to describe the geometric location of the periodic points in terms of their distance to the origin. More precisely, we characterize all 2-ramified power series, i.e. power series having ramification numbers of the form 2(1 + *p *+ … + *p ^{n}*). Moreover, we also obtain a lower bound of the absolute value of the periodic points in the open unit disk of such series.

1. Characterization of 2-ramified power series$(function(){PrimeFaces.cw("OverlayPanel","overlay1051531",{id:"formSmash:j_idt648:0:j_idt652",widgetVar:"overlay1051531",target:"formSmash:j_idt648:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Geometric location of periodic points of 2-ramified power series$(function(){PrimeFaces.cw("OverlayPanel","overlay1099114",{id:"formSmash:j_idt648:1:j_idt652",widgetVar:"overlay1099114",target:"formSmash:j_idt648:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1599",{id:"formSmash:j_idt1599",widgetVar:"widget_formSmash_j_idt1599",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1685",{id:"formSmash:lower:j_idt1685",widgetVar:"widget_formSmash_lower_j_idt1685",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1687_j_idt1689",{id:"formSmash:lower:j_idt1687:j_idt1689",widgetVar:"widget_formSmash_lower_j_idt1687_j_idt1689",target:"formSmash:lower:j_idt1687:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});