CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt172",{id:"formSmash:upper:j_idt172",widgetVar:"widget_formSmash_upper_j_idt172",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt179_j_idt182",{id:"formSmash:upper:j_idt179:j_idt182",widgetVar:"widget_formSmash_upper_j_idt179_j_idt182",target:"formSmash:upper:j_idt179:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Effective Domains and Admissible Domain RepresentationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2005 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Uppsala universitet, 2005. , p. vii + 33 p.
##### Series

Uppsala dissertations in Mathematics, ISSN 1401-2049 ; 42
##### Keyword [en]

Logic, symbolic and mathematical, domain theory, admissible domain representation, cartesian closure, effective domains, κ-sequential space, limit space, Matematisk logik
##### National Category

Mathematics Algebra and Logic
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-220918ISBN: 91-506-1817-2 (print)OAI: oai:DiVA.org:kth-220918DiVA, id: diva2:1172235
##### Public defence

2005-09-07, 00:00
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt603",{id:"formSmash:j_idt603",widgetVar:"widget_formSmash_j_idt603",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt611",{id:"formSmash:j_idt611",widgetVar:"widget_formSmash_j_idt611",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt618",{id:"formSmash:j_idt618",widgetVar:"widget_formSmash_j_idt618",multiple:true});
##### Note

##### List of papers

This thesis consists of four papers in domain theory and a summary. The first two papers deal with the problem of defining effectivity for continuous cpos. The third and fourth paper present the new notion of an admissible domain representation, where a domain representation D of a space X is λ-admissible if, in principle, all other λ-based domain representations E of X can be reduced to X via a continuous function from E to D. In Paper I we define a cartesian closed category of effective bifinite domains. We also investigate the method of inducing effectivity onto continuous cpos via projection pairs, resulting in a cartesian closed category of projections of effective bifinite domains. In Paper II we introduce the notion of an almost algebraic basis for a continuous cpo, showing that there is a natural cartesian closed category of effective consistently complete continuous cpos with almost algebraic bases. We also generalise the notion of a complete set, used in Paper I to define the bifinite domains, and investigate what closure results that can be obtained. In Paper III we consider admissible domain representations of topological spaces. We present a characterisation theorem of exactly when a topological space has a λ-admissible and κ-based domain representation. We also show that there is a natural cartesian closed category of countably based and countably admissible domain representations. In Paper IV we consider admissible domain representations of convergence spaces, where a convergence space is a set X together with a convergence relation between nets on X and elements of X. We study in particular the new notion of weak κ-convergence spaces, which roughly means that the convergence relation satisfies a generalisation of the Kuratowski limit space axioms to cardinality κ. We show that the category of weak κ-convergence spaces is cartesian closed. We also show that the category of weak κ-convergence spaces that have a dense, λ-admissible, κ-continuous and α-based consistently complete domain representation is cartesian closed when α ≤ λ ≥ κ. As natural corollaries we obtain corresponding results for the associated category of weak convergence spaces.

QC 20180109

Available from: 2018-01-09 Created: 2018-01-09 Last updated: 2018-01-10Bibliographically approved1. Cartesian closed categories of effective domains$(function(){PrimeFaces.cw("OverlayPanel","overlay1172421",{id:"formSmash:j_idt656:0:j_idt663",widgetVar:"overlay1172421",target:"formSmash:j_idt656:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Two categories of effective continuous cpos$(function(){PrimeFaces.cw("OverlayPanel","overlay1172422",{id:"formSmash:j_idt656:1:j_idt663",widgetVar:"overlay1172422",target:"formSmash:j_idt656:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Admissible domain representations of topological spaces$(function(){PrimeFaces.cw("OverlayPanel","overlay1172423",{id:"formSmash:j_idt656:2:j_idt663",widgetVar:"overlay1172423",target:"formSmash:j_idt656:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Admissible domain representations of convergence spaces$(function(){PrimeFaces.cw("OverlayPanel","overlay1172424",{id:"formSmash:j_idt656:3:j_idt663",widgetVar:"overlay1172424",target:"formSmash:j_idt656:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1735",{id:"formSmash:j_idt1735",widgetVar:"widget_formSmash_j_idt1735",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1898",{id:"formSmash:lower:j_idt1898",widgetVar:"widget_formSmash_lower_j_idt1898",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1900_j_idt1902",{id:"formSmash:lower:j_idt1900:j_idt1902",widgetVar:"widget_formSmash_lower_j_idt1900_j_idt1902",target:"formSmash:lower:j_idt1900:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});