Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Semi-supervised Learning for Real-world Object Recognition using Adversarial Autoencoders
KTH, School of Computer Science and Communication (CSC).
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

For many real-world applications, labeled data can be costly to obtain. Semi-supervised learning methods make use of substantially available unlabeled data along with few labeled samples. Most of the latest work on semi-supervised learning for image classification show performance on standard machine learning datasets like MNIST, SVHN, etc. In this work, we propose a convolutional adversarial autoencoder architecture for real-world data. We demonstrate the application of this architecture for semi-supervised object recognition. We show that our approach can learn from limited labeled data and outperform fully-supervised CNN baseline method by about 4% on real-world datasets. We also achieve competitive performance on the MNIST dataset compared to state-of-the-art semi-supervised learning techniques. To spur research in this direction, we compiled two real-world datasets: Internet (WIS) dataset and Real-world (RW) dataset which consists of more than 20K labeled samples each, comprising of small household objects belonging to ten classes. We also show a possible application of this method for online learning in robotics.

Abstract [sv]

I de flesta verklighetsbaserade tillämpningar kan det vara kostsamt att erhålla märkt data. Inlärningsmetoder som är semi-övervakade använder sig oftast i stor utsträckning av omärkt data med stöd av en liten mängd märkt data. Mycket av det senaste arbetet inom semiövervakade inlärningsmetoder för bildklassificering visar prestanda på standardiserad maskininlärning så som MNIST, SVHN, och så vidare. I det här arbetet föreslår vi en convolutional adversarial autoencoder arkitektur för verklighetsbaserad data. Vi demonstrerar tillämpningen av denna arkitektur för semi-övervakad objektidentifiering och visar att vårt tillvägagångssätt kan lära sig av ett begränsat antal märkt data. Därmed överträffar vi den fullt övervakade CNN-baslinjemetoden med ca. 4% på verklighetsbaserade datauppsättningar. Vi uppnår även konkurrenskraftig prestanda på MNIST datauppsättningen jämfört med moderna semi-övervakade inlärningsmetoder. För att stimulera forskningen i den här riktningen, samlade vi två verklighetsbaserade datauppsättningar: Internet (WIS) och Real-world (RW) datauppsättningar, som består av mer än 20 000 märkta prov vardera, som utgörs av små hushållsobjekt tillhörandes tio klasser. Vi visar också en möjlig tillämpning av den här metoden för online-inlärning i robotik.

Place, publisher, year, edition, pages
2017.
Keywords [en]
Semi-supervised Learning, Object Recognition, Adversarial Training, Autoencoders
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-220794OAI: oai:DiVA.org:kth-220794DiVA, id: diva2:1171308
Educational program
Master of Science - Machine Learning
Supervisors
Examiners
Available from: 2018-01-18 Created: 2018-01-07 Last updated: 2018-01-18Bibliographically approved

Open Access in DiVA

fulltext(37404 kB)34 downloads
File information
File name FULLTEXT01.pdfFile size 37404 kBChecksum SHA-512
6968966925e47be773b615e1da866ebfcf3578ed5833aff9d058e3d841ac4abb6fb0da6c7b71b693b6565b343c033a4fef631d03b5253fe416cc590f58814655
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 34 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 195 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf