Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Strong Cosmic Censorship in orthogonal Bianchi class B perfect fluid and vacuum models
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The Strong Cosmic Censorship conjecture states that for generic initial data to Einstein's field equations, the maximal globally hyperbolic development is inextendible. We prove this conjecture in the class of orthogonal Bianchi class B perfect fluids and vacuum spacetimes, by showing that unboundedness of certain curvature invariants such as the Kretschmann scalar is a generic property. The only spacetimes where this scalar remains bounded exhibit local rotational symmetry or are of plane wave equilibrium type.

We further investigate the qualitative behaviour of solutions towards the initial singularity. To this end, we work in the expansion-normalised variables introduced by Hewitt-Wainwright and show that a set of full measure, which is also a countable intersection of open and dense sets in the state space, yields convergence to a specific subarc of the Kasner parabola. We further give an explicit construction enabling the translation between these variables and geometric initial data to Einstein's equations.

Keyword [en]
cosmic censorship, Bianchi, class B, spatially homogeneous, prefect fluid, vacuum, curvature, blow-up
National Category
Geometry Mathematical Analysis
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-220393OAI: oai:DiVA.org:kth-220393DiVA, id: diva2:1167756
Note

QC 20171219

Available from: 2017-12-19 Created: 2017-12-19 Last updated: 2017-12-19Bibliographically approved
In thesis
1. Strong Cosmic Censorship and Cosmic No-Hair in spacetimes with symmetries
Open this publication in new window or tab >>Strong Cosmic Censorship and Cosmic No-Hair in spacetimes with symmetries
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis consists of three articles investigating the asymptotic behaviour of cosmological spacetimes with symmetries arising in Mathematical General Relativity.

In Paper A and B, we consider spacetimes with Bianchi symmetry and where the matter model is that of a perfect fluid. We investigate the behaviour of such spacetimes close to the initial singularity ('Big Bang'). In Paper A, we prove that the Strong Cosmic Censorship conjecture holds in non-exceptional Bianchi class B spacetimes. Using expansion-normalised variables, we further show detailed asymptotic estimates. In Paper B, we prove similar estimates in the case of stiff fluids.

In Paper C, we consider T2-symmetric spacetimes satisfying the Einstein equations for a non-linear scalar field. To given initial data, we show global existence and uniqueness of solutions to the corresponding differential equations for all future times. In the special case of a constant potential, a setting which is equivalent to a linear scalar field on a background with a positive cosmological constant, we investigate in detail the asymptotic behaviour towards the future. We prove that the Cosmic No-Hair conjecture holds for solutions satisfying an additional a priori estimate, an estimate which we show to hold in T3-Gowdy symmetry.

Abstract [sv]

Denna avhandling består av tre artiklar som undersöker det asymptotiska beteendet hos kosmologiska rumstider med symmetrier som uppstår i Matematisk Allmän Relativitetsteori.

I Artikel A och B studerar vi rumstider med Bianchi symmetri och där materiemodellen är en ideal fluid. Vi undersöker beteendet av sådana rumstider nära ursprungssingulariteten ('Big Bang'). I Artikel A bevisar vi att den Starka Kosmiska Censur-förmodan håller för icke-exceptionella Bianchi klass B-rumstider. Med hjälp av expansions-normaliserade variabler visar vi detaljerade asymptotiska uppskattningar. I Artikel B visar vi liknande uppskattningar för stela fluider.

I Artikel C betraktar vi T2-symmetriska rumstider som uppfyller Einsteins ekvationer för ett icke-linjärt skalärfält. För givna begynnelsedata visar vi global existens och entydighet av lösningar till motsvarande differentialekvationer för all framtid. I det speciella fallet med en konstant potential, en situation som motsvarar ett linjärt skalärfält på en bakgrund med en positiv kosmologisk konstant, undersöker vi i detalj det asymptotiska beteendet mot framtiden. Vi visar att den Kosmiska Inget-Hår-förmodan håller för lösningar som uppfyller en ytterligare a priori uppskattning, en uppskattning som vi visar gäller i T3-Gowdy-symmetri.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. p. 39
Series
TRITA-MAT-A ; 2017:06
Keyword
Cosmic Censorship, Cosmic No-Hair, Big Bang, symmetry, Bianchi, T2-symmetry, Gowdy, general relativity, cosmology, late time, initial time, asymptotic behaviour, perfect fluid, scalar field, Einstein equations
National Category
Geometry Mathematical Analysis
Research subject
Mathematics
Identifiers
urn:nbn:se:kth:diva-220400 (URN)978-91-7729-632-4 (ISBN)
Public defence
2018-02-19, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20171220

Available from: 2017-12-20 Created: 2017-12-19 Last updated: 2017-12-20Bibliographically approved

Open Access in DiVA

fulltext(851 kB)5 downloads
File information
File name FULLTEXT01.pdfFile size 851 kBChecksum SHA-512
48b3e4be8033015abf981209a674733eac76623ae6fa7ee11ecdb3a2637756d832eb1c56cf1c65a8a26242d8a01cdee565a55235d2b60d4f33bd5df5cd7b8e9f
Type fulltextMimetype application/pdf

Other links

arXiv:1612.06278v3

Search in DiVA

By author/editor
Radermacher, Katharina Maria
By organisation
Mathematics (Div.)
GeometryMathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 5 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf