Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis
Dalhousie Univ, Dept Biochem & Mol Biol, Halifax, NS, Canada.;Dalhousie Univ, Ctr Comparat Genom & Evolutionary Bioinformat, Halifax, NS, Canada.;Mae Fah Luang Univ, Sch Sci, Chiang Rai, Thailand.;Mae Fah Luang Univ, Human Gut Microbiome Hlth Res Unit, Chiang Rai, Thailand..
Dalhousie Univ, Dept Biochem & Mol Biol, Halifax, NS, Canada.;Dalhousie Univ, Ctr Comparat Genom & Evolutionary Bioinformat, Halifax, NS, Canada..
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution. Dalhousie Univ, Dept Biochem & Mol Biol, Halifax, NS, Canada.;Dalhousie Univ, Ctr Comparat Genom & Evolutionary Bioinformat, Halifax, NS, Canada..
Univ Ostrava, Dept Biol & Ecol, Fac Sci, Ostrava, Czech Republic..
Show others and affiliations
2017 (English)In: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 15, no 9, article id e2003769Article in journal (Refereed) Published
Abstract [en]

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize alpha-glucans rather than beta-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.

Place, publisher, year, edition, pages
PUBLIC LIBRARY SCIENCE , 2017. Vol. 15, no 9, article id e2003769
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-336835DOI: 10.1371/journal.pbio.2003769ISI: 000411978200015PubMedID: 28892507OAI: oai:DiVA.org:uu-336835DiVA, id: diva2:1167209
Funder
Wellcome trust
Available from: 2017-12-18 Created: 2017-12-18 Last updated: 2017-12-18Bibliographically approved

Open Access in DiVA

fulltext(5852 kB)6 downloads
File information
File name FULLTEXT01.pdfFile size 5852 kBChecksum SHA-512
874bae8992a9553572e601ec12aac7f383644106c705d6b62d9c929280a2b10a990e7458f644dd0c901acc4e280954da49e1feebe808e208020ce6e4dfc14290
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Stairs, Courtney W.Eme, Laura
By organisation
Molecular Evolution
In the same journal
PLoS biology
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 6 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf